- 深度學(xué)習(xí)怎么輸出標(biāo)簽的概率分布 內(nèi)容精選 換一換
-
征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺(jué)、 語(yǔ)音識(shí)別 、自然語(yǔ)言處理等其他領(lǐng)域。來(lái)自:百科來(lái)自:百科
- 深度學(xué)習(xí)怎么輸出標(biāo)簽的概率分布 相關(guān)內(nèi)容
-
本課程介紹了雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例,讓你對(duì)雙向深度學(xué)習(xí)有初步的認(rèn)知。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、認(rèn)識(shí)雙向智能。 2、了解深度雙向智能的理論、算法和應(yīng)用示例。 課程大綱 第1章 引言 第2章 雙向智能 第3章 深度雙向智能 華為云 面向未來(lái)的智能世界,數(shù)字化來(lái)自:百科的深度學(xué)習(xí)。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員了解如下知識(shí): 1、高效的結(jié)構(gòu)設(shè)計(jì)。 2、用NAS搜索輕量級(jí)網(wǎng)絡(luò)。 3、數(shù)據(jù)高效的模型壓縮。 4、1bit量化。 課程大綱 第1章 能耗高效的深度學(xué)習(xí)的背景 第2章 高效的神經(jīng)元和結(jié)構(gòu)設(shè)計(jì) 第3章 基于NAS的輕量級(jí)神經(jīng)網(wǎng)絡(luò) 第4章來(lái)自:百科
- 深度學(xué)習(xí)怎么輸出標(biāo)簽的概率分布 更多內(nèi)容
-
云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科好的訓(xùn)練效果。 本次訓(xùn)練所使用的經(jīng)過(guò)數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過(guò)人工神經(jīng)網(wǎng)絡(luò)來(lái)提取特征,不同層的輸出常被視為神經(jīng)網(wǎng)絡(luò)提取出的不同尺度的特征,上一層的輸出作來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣(mài)機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科好用的數(shù)據(jù)處理方案——數(shù)據(jù)工坊 DWR 好用的數(shù)據(jù)處理方案——數(shù)據(jù)工坊 DWR 數(shù)據(jù)工坊DWR是開(kāi)放的近數(shù)據(jù)處理服務(wù)。支持易用的工作流編排和開(kāi)放生態(tài)的數(shù)據(jù)處理算子市場(chǎng),能夠?qū)崿F(xiàn)靈活的數(shù)據(jù)及時(shí)處理。 數(shù)據(jù)工坊DWR是開(kāi)放的近數(shù)據(jù)處理服務(wù)。支持易用的工作流編排和開(kāi)放生態(tài)的數(shù)據(jù)處理算子市場(chǎng),能夠?qū)崿F(xiàn)靈活的數(shù)據(jù)及時(shí)處理。來(lái)自:專題好用的數(shù)據(jù)處理方案-數(shù)據(jù)工坊DWR 好用的數(shù)據(jù)處理方案-數(shù)據(jù)工坊DWR 數(shù)據(jù)工坊DWR是開(kāi)放的近數(shù)據(jù)處理服務(wù)。支持易用的工作流編排和開(kāi)放生態(tài)的數(shù)據(jù)處理算子市場(chǎng),能夠?qū)崿F(xiàn)靈活的數(shù)據(jù)及時(shí)處理。 數(shù)據(jù)工坊DWR是開(kāi)放的近數(shù)據(jù)處理服務(wù)。支持易用的工作流編排和開(kāi)放生態(tài)的數(shù)據(jù)處理算子市場(chǎng),能夠?qū)崿F(xiàn)靈活的數(shù)據(jù)及時(shí)處理。來(lái)自:專題面頂部“登錄” ,如 下圖所示: 2 我的課程 登錄成功后,點(diǎn)擊網(wǎng)站上方學(xué)習(xí)中心,看到學(xué)習(xí)的課程。 學(xué)生查看學(xué)習(xí)的課程如下圖所示: 3 課程學(xué)習(xí) 3.1 課程內(nèi)容學(xué)習(xí) 點(diǎn)擊課程圖片,進(jìn)入課程主頁(yè)學(xué)習(xí) 章節(jié)導(dǎo)航中,可以看到課程安排需要學(xué)習(xí)的內(nèi)容,如下圖所示 課程內(nèi)容包含:視頻,文檔,網(wǎng)頁(yè),附件,測(cè)驗(yàn)和作業(yè)。來(lái)自:云商店方式二:通過(guò)引進(jìn)資源開(kāi)課方式,創(chuàng)建開(kāi)課。 4.1.1 開(kāi)課信息設(shè)置 創(chuàng)建開(kāi)課完成后,點(diǎn)擊管理,對(duì)開(kāi)課進(jìn)行相關(guān)設(shè)置。 1. 可以對(duì)開(kāi)課的時(shí)間、開(kāi)課名稱等屬性進(jìn)行設(shè)置 2. 對(duì)本次開(kāi)課的課程信息進(jìn)行設(shè)置 3. 對(duì)本次開(kāi)課的教師信息進(jìn)行設(shè)置 4.1.2 教學(xué)內(nèi)容安排 點(diǎn)擊教學(xué)活動(dòng)中備課,安排和設(shè)置課程內(nèi)容。如下圖所示。 課程內(nèi)容支持來(lái)自:云商店圖片處理平臺(tái)——數(shù)據(jù)工坊 DWR 數(shù)據(jù)工坊DWR是開(kāi)放的近數(shù)據(jù)處理服務(wù)。支持易用的工作流編排和開(kāi)放生態(tài)的數(shù)據(jù)處理算子市場(chǎng),能夠?qū)崿F(xiàn)靈活的數(shù)據(jù)及時(shí)處理。 數(shù)據(jù)工坊DWR是開(kāi)放的近數(shù)據(jù)處理服務(wù)。支持易用的工作流編排和開(kāi)放生態(tài)的數(shù)據(jù)處理算子市場(chǎng),能夠?qū)崿F(xiàn)靈活的數(shù)據(jù)及時(shí)處理。 [喜報(bào)]DWR榮獲2021年 數(shù)據(jù)管理 解決方案金獎(jiǎng)來(lái)自:專題GaussDB數(shù)據(jù)庫(kù)針對(duì)數(shù)據(jù)傾斜問(wèn)題給出了完整的解決方案,包括存儲(chǔ)傾斜和計(jì)算傾斜兩大問(wèn)題。 云數(shù)據(jù)庫(kù)GaussDB實(shí)際調(diào)優(yōu)案例 云數(shù)據(jù)庫(kù)GaussDB調(diào)優(yōu)案例總覽 選擇合適的分布列 案例 選擇合適的分布列從而進(jìn)行性能提升。 選擇合適的分布列從而進(jìn)行性能提升。 建立合適的索引 案例 通過(guò)建立合適的索引進(jìn)行優(yōu)化。 通過(guò)建立合適的索引進(jìn)行優(yōu)化。來(lái)自:專題
- 深度學(xué)習(xí)必懂的 13 種概率分布
- 基于深度學(xué)習(xí)的標(biāo)簽分布學(xué)習(xí)介紹
- 統(tǒng)計(jì)學(xué)基礎(chǔ)學(xué)習(xí)筆記:概率與概率分布
- 深度學(xué)習(xí)進(jìn)階,多個(gè)輸出和多個(gè)損失實(shí)現(xiàn)多標(biāo)簽分類
- 深度學(xué)習(xí)數(shù)學(xué)基礎(chǔ)-概率與信息論
- 基于深度神經(jīng)網(wǎng)絡(luò)的噪聲標(biāo)簽學(xué)習(xí)
- 《搞懂樸素貝葉斯:先驗(yàn)概率與后驗(yàn)概率的深度剖析》
- 數(shù)據(jù)分布探索:偏度、峰度與概率分布
- 《Keras深度學(xué)習(xí)實(shí)戰(zhàn)》—2.9.2 示例的輸出
- 給定概率分布的隨機(jī)變量仿真