- 深度學(xué)習(xí)的方法對(duì)信道進(jìn)行建模 內(nèi)容精選 換一換
-
征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺(jué)、 語(yǔ)音識(shí)別 、自然語(yǔ)言處理等其他領(lǐng)域。來(lái)自:百科來(lái)自:百科
- 深度學(xué)習(xí)的方法對(duì)信道進(jìn)行建模 相關(guān)內(nèi)容
-
本課程介紹了雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例,讓你對(duì)雙向深度學(xué)習(xí)有初步的認(rèn)知。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、認(rèn)識(shí)雙向智能。 2、了解深度雙向智能的理論、算法和應(yīng)用示例。 課程大綱 第1章 引言 第2章 雙向智能 第3章 深度雙向智能 華為云 面向未來(lái)的智能世界,數(shù)字化來(lái)自:百科云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科
- 深度學(xué)習(xí)的方法對(duì)信道進(jìn)行建模 更多內(nèi)容
-
更好的訓(xùn)練效果。 本次訓(xùn)練所使用的經(jīng)過(guò)數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過(guò)人工神經(jīng)網(wǎng)絡(luò)來(lái)提取特征,不同層的輸出常被視為神經(jīng)網(wǎng)絡(luò)提取出的不同尺度的特征,上一層的輸出來(lái)自:百科用,并實(shí)現(xiàn)售賣(mài)機(jī)的智能化運(yùn)營(yíng),是一個(gè)貫穿數(shù)據(jù)開(kāi)發(fā)、數(shù)據(jù)采集、數(shù)據(jù)挖掘應(yīng)用的完整項(xiàng)目。 目標(biāo)學(xué)員 希望了解AI與IoT技術(shù)結(jié)合場(chǎng)景實(shí)現(xiàn)方法并掌握其開(kāi)發(fā)能力的人員。 課程目標(biāo) 通過(guò)學(xué)習(xí)本課程,學(xué)員可以對(duì)設(shè)備接入IoT平臺(tái)上報(bào)數(shù)據(jù),基于AI對(duì)設(shè)備上報(bào)數(shù)據(jù)進(jìn)行分析預(yù)測(cè)的實(shí)際應(yīng)用場(chǎng)景有一個(gè)了解。來(lái)自:百科華為云計(jì)算 云知識(shí) 基于SDRS對(duì)云端應(yīng)用進(jìn)行容災(zāi)保護(hù) 基于SDRS對(duì)云端應(yīng)用進(jìn)行容災(zāi)保護(hù) 時(shí)間:2020-12-01 10:50:37 本實(shí)驗(yàn)指導(dǎo)用戶基于華為云存儲(chǔ)容災(zāi)服務(wù)(SDRS),對(duì)部署在 彈性云服務(wù)器 上的OA應(yīng)用及其數(shù)據(jù)庫(kù)進(jìn)行容災(zāi)保護(hù),保證應(yīng)用數(shù)據(jù)可靠性以及業(yè)務(wù)連續(xù)性。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求來(lái)自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科華為云計(jì)算 云知識(shí) 基于CloudTest對(duì)云端應(yīng)用進(jìn)行性能測(cè)試 基于CloudTest對(duì)云端應(yīng)用進(jìn)行性能測(cè)試 時(shí)間:2020-12-02 09:57:45 本實(shí)驗(yàn)指導(dǎo)用戶基于華為云云性能測(cè)試服務(wù)對(duì)云端應(yīng)用進(jìn)行性能測(cè)試。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 通過(guò)本實(shí)驗(yàn),您將能夠: ① 使用CCI資源組基于云性能測(cè)試服務(wù)測(cè)試云端應(yīng)用。來(lái)自:百科ER/Studio是一套模型驅(qū)動(dòng)的數(shù)據(jù)結(jié)構(gòu)管理和數(shù)據(jù)庫(kù)設(shè)計(jì)產(chǎn)品,幫助企業(yè)發(fā)現(xiàn)、重用和文檔化數(shù)據(jù)資產(chǎn)。通過(guò)可回歸的數(shù)據(jù)庫(kù)支持,使數(shù)據(jù)結(jié)構(gòu)具備完全地分析已有數(shù)據(jù)源的能力,并根據(jù)業(yè)務(wù)需求設(shè)計(jì)和實(shí)現(xiàn)高質(zhì)量的數(shù)據(jù)庫(kù)結(jié)構(gòu)。易讀的可視化數(shù)據(jù)結(jié)構(gòu)加強(qiáng)了業(yè)務(wù)分析人。.員和應(yīng)用開(kāi)發(fā)人員之間工作溝通的能力。ER/Studio來(lái)自:百科數(shù)據(jù)庫(kù)設(shè)計(jì)的方法:新奧爾良方法 數(shù)據(jù)庫(kù)設(shè)計(jì)的方法:新奧爾良方法 時(shí)間:2021-06-02 09:44:14 數(shù)據(jù)庫(kù) 1978年10月,來(lái)自三十多個(gè)國(guó)家的數(shù)據(jù)庫(kù)專家在美國(guó)新奧爾良市專門(mén)討論了數(shù)據(jù)庫(kù)設(shè)計(jì)問(wèn)題。 他們運(yùn)用軟件工程的思想和方法,提出了數(shù)據(jù)庫(kù)設(shè)計(jì)的規(guī)范,這就是著名的新奧爾良來(lái)自:百科數(shù)據(jù)庫(kù)開(kāi)發(fā)環(huán)境 HCIA- GaussDB 系列課程。華為的GaussDB支持基于C、Java等應(yīng)用程序的開(kāi)發(fā)。了解它相關(guān)的系統(tǒng)結(jié)構(gòu)和相關(guān)概念,有助于更好地去開(kāi)發(fā)和使用 GaussDB數(shù)據(jù)庫(kù) 。 本課程講述了GaussDB的所有工具使用,方便用戶學(xué)習(xí)和查看。學(xué)習(xí)本課程之前,需要了解操作系統(tǒng)知識(shí),C/J來(lái)自:百科
- 基于深度學(xué)習(xí)的兩種信源信道聯(lián)合編碼
- 油藏地質(zhì)建模中的深度學(xué)習(xí)算法探索
- 【軟件建?!繉?duì)軟件建模的認(rèn)識(shí)
- 油藏模擬中的機(jī)器學(xué)習(xí)建模方法研究
- 使用MLS預(yù)置算鏈進(jìn)行機(jī)器學(xué)習(xí)建模
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.4 優(yōu)化深度學(xué)習(xí)的方法
- 對(duì)深度學(xué)習(xí)概念的基礎(chǔ)理解與認(rèn)識(shí)
- 油藏預(yù)測(cè)建模中的高級(jí)機(jī)器學(xué)習(xí)方法
- Chemical Science | 通過(guò)異構(gòu)網(wǎng)絡(luò)中的深度學(xué)習(xí)對(duì)已知藥物進(jìn)行靶標(biāo)識(shí)別
- 開(kāi)發(fā)深度學(xué)習(xí)模型
- 使用TICS可信聯(lián)邦學(xué)習(xí)進(jìn)行聯(lián)邦建模
- 問(wèn)答模型訓(xùn)練(可選)
- 數(shù)據(jù)架構(gòu)支持哪些數(shù)據(jù)建模方法?
- 在哪里可以進(jìn)行課程學(xué)習(xí)?
- AI開(kāi)發(fā)基本流程介紹
- 部署NGC容器環(huán)境以構(gòu)建深度學(xué)習(xí)開(kāi)發(fā)環(huán)境
- 在哪里可以進(jìn)行課程學(xué)習(xí)?
- 使用指數(shù)退避方法對(duì)DEW服務(wù)請(qǐng)求錯(cuò)誤進(jìn)行重試
- 對(duì)暫停中的任務(wù)進(jìn)行操作