- 人工智能與深度學(xué)習(xí)實(shí)戰(zhàn)課程 內(nèi)容精選 換一換
-
越了人類的水平。本課程將介紹深度學(xué)習(xí)算法的知識。 課程簡介 本課程將會(huì)探討深度學(xué)習(xí)中的基礎(chǔ)理論、算法、使用方法、技巧與不同的深度學(xué)習(xí)模型。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、掌握神經(jīng)網(wǎng)絡(luò)基礎(chǔ)理論。 2、掌握深度學(xué)習(xí)中數(shù)據(jù)處理的基本方法。 3、掌握深度學(xué)習(xí)訓(xùn)練中調(diào)參、模型選擇的基本方法。來自:百科來自:百科
- 人工智能與深度學(xué)習(xí)實(shí)戰(zhàn)課程 相關(guān)內(nèi)容
-
溫馨提示:詳情信息請以課程詳情頁信息為準(zhǔn)。 AI開發(fā)平臺 ModelArts ModelArts是面向開發(fā)者的一站式AI開發(fā)平臺,為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Training、自動(dòng)化模型生成,及端-邊-云模型按需部署能力,幫助用戶快速創(chuàng)建和部署模型,管理全周期AI工作流。 產(chǎn)品詳情立即注冊一元域名華為 云桌面來自:百科需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:描述神經(jīng)網(wǎng)絡(luò)的定義與發(fā)展;熟悉深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的重要“部件”;熟悉神經(jīng)網(wǎng)絡(luò)的訓(xùn)練與優(yōu)化;描述深度學(xué)習(xí)中常見的問題。 課程大綱 1. 深度學(xué)習(xí)簡介來自:百科
- 人工智能與深度學(xué)習(xí)實(shí)戰(zhàn)課程 更多內(nèi)容
-
華為云計(jì)算 云知識 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺來自:百科Reward:Actor的執(zhí)行結(jié)果的反饋,提供給Learner 大數(shù)據(jù)應(yīng)用范圍有哪些 大數(shù)據(jù)應(yīng)用范圍有哪些 華為云大數(shù)據(jù)相關(guān)技術(shù)與產(chǎn)品服務(wù) 華為云大數(shù)據(jù)相關(guān)技術(shù)與產(chǎn)品服務(wù) 大數(shù)據(jù)計(jì)算 大數(shù)據(jù)搜索與分析 大 數(shù)據(jù)治理 與開發(fā) 數(shù)據(jù)可視化 大數(shù)據(jù)應(yīng)用 數(shù)據(jù)平臺 MapReduce服務(wù) 支持多應(yīng)用場景集群 MapReduce服務(wù)(MapReduce來自:專題期望通過開發(fā)者的學(xué)習(xí),幫助企業(yè)解決實(shí)際問題,實(shí)現(xiàn)生產(chǎn)自動(dòng)化、提升效率,同時(shí)這也是華為云奉獻(xiàn)給開發(fā)者們的一場技術(shù)盛宴。 課程簡介 本課程主要內(nèi)容包括:機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、 圖引擎 、 圖像識別 、 OCR文字識別 、 人臉識別 、視頻識別等前沿AI技術(shù)。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、系統(tǒng)、完整的了解多項(xiàng)前沿AI技術(shù)理論;來自:百科
- 人工智能深度學(xué)習(xí)
- 人工智能中的深度學(xué)習(xí):原理與實(shí)踐
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.1.3 深度學(xué)習(xí)
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.2 深度學(xué)習(xí)框架
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 深度學(xué)習(xí)框架(PyTorch)
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.2 統(tǒng)計(jì)學(xué)與深度學(xué)習(xí)
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.1.2 傳統(tǒng)機(jī)器學(xué)習(xí)與深度學(xué)習(xí)的對比
- 《深度學(xué)習(xí)之TensorFlow入門、原理與進(jìn)階實(shí)戰(zhàn)》—1 快速了解人工智能與TensorFlow
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》
- 機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、人工智能三步走,人工智能必須知道的幾種深度學(xué)習(xí)算法