- 深度學(xué)習(xí)與人工智能 內(nèi)容精選 換一換
-
來(lái)自:百科需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:描述神經(jīng)網(wǎng)絡(luò)的定義與發(fā)展;熟悉深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的重要“部件”;熟悉神經(jīng)網(wǎng)絡(luò)的訓(xùn)練與優(yōu)化;描述深度學(xué)習(xí)中常見(jiàn)的問(wèn)題。 課程大綱 1. 深度學(xué)習(xí)簡(jiǎn)介來(lái)自:百科
- 深度學(xué)習(xí)與人工智能 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科類的水平。本課程將介紹深度學(xué)習(xí)算法的知識(shí)。 課程簡(jiǎn)介 本課程將會(huì)探討深度學(xué)習(xí)中的基礎(chǔ)理論、算法、使用方法、技巧與不同的深度學(xué)習(xí)模型。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、掌握神經(jīng)網(wǎng)絡(luò)基礎(chǔ)理論。 2、掌握深度學(xué)習(xí)中數(shù)據(jù)處理的基本方法。 3、掌握深度學(xué)習(xí)訓(xùn)練中調(diào)參、模型選擇的基本方法。來(lái)自:百科
- 深度學(xué)習(xí)與人工智能 更多內(nèi)容
-
經(jīng)網(wǎng)絡(luò)開(kāi)發(fā)和訓(xùn)練,可謂再好不過(guò)了。如何使用深度學(xué)習(xí)框架MindSpore進(jìn)行模型開(kāi)發(fā)與訓(xùn)練?又如何在ModelArts平臺(tái)訓(xùn)練一個(gè)可以用于識(shí)別手寫(xiě)數(shù)字的模型呢?讓我們來(lái)一探究竟吧。 數(shù)據(jù)集的選擇與準(zhǔn)備 機(jī)器學(xué)習(xí)中的傳統(tǒng)機(jī)器學(xué)習(xí)和深度學(xué)習(xí)都是數(shù)據(jù)驅(qū)動(dòng)的研究領(lǐng)域,需要基于大量的歷史數(shù)來(lái)自:百科與應(yīng)用。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 通過(guò)本實(shí)驗(yàn)將了解如何使用Keras和Tensorflow構(gòu)建DFCNN的 語(yǔ)音識(shí)別 神經(jīng)網(wǎng)絡(luò),并且熟悉整個(gè)處理流程,包括數(shù)據(jù)預(yù)處理、模型訓(xùn)練、模型保存和模型預(yù)測(cè)等環(huán)節(jié)。 實(shí)驗(yàn)摘要 實(shí)驗(yàn)準(zhǔn)備:登錄華為云賬號(hào) 1. OBS 準(zhǔn)備 2.ModelArts應(yīng)用 3.開(kāi)始語(yǔ)音識(shí)別操作來(lái)自:百科故障識(shí)別與根因定位服務(wù)實(shí)操 該實(shí)驗(yàn)旨在指導(dǎo)用戶短時(shí)間內(nèi)熟悉并掌握故障識(shí)別與根因定位服務(wù)使用方式。 使用昇騰 彈性云服務(wù)器 實(shí)現(xiàn)黑白圖像上色應(yīng)用(C++) 本實(shí)驗(yàn)主要介紹基于AI1型服務(wù)器的黑白圖像上色項(xiàng)目,并部署在AI1型服務(wù)器上執(zhí)行的方法。 基于昇騰彈性云服務(wù)器的人工智能應(yīng)用開(kāi)發(fā)實(shí)驗(yàn)(Python)來(lái)自:專題溫馨提示:詳情信息請(qǐng)以課程詳情頁(yè)信息為準(zhǔn)。 AI開(kāi)發(fā)平臺(tái)ModelArts ModelArts是面向開(kāi)發(fā)者的一站式AI開(kāi)發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Training、自動(dòng)化模型生成,及端-邊-云模型按需部署能力,幫助用戶快速創(chuàng)建和部署模型,管理全周期AI工作流。 產(chǎn)品詳情立即注冊(cè)一元域名華為 云桌面來(lái)自:百科華為云計(jì)算 云知識(shí) 計(jì)算機(jī)視覺(jué)基礎(chǔ):深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò) 計(jì)算機(jī)視覺(jué)基礎(chǔ):深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò) 時(shí)間:2020-12-17 09:56:23 通過(guò)學(xué)習(xí),您將掌握計(jì)算機(jī)視覺(jué)的基本概念和主要知識(shí)點(diǎn),并且對(duì)于計(jì)算機(jī)視覺(jué)和廣義人工智能的方法論有一定的認(rèn)識(shí),初步具備判斷計(jì)算機(jī)視覺(jué)是否適合解決特定問(wèn)題的能力。來(lái)自:百科
- 人工智能深度學(xué)習(xí)
- 人工智能中的深度學(xué)習(xí):原理與實(shí)踐
- 機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、人工智能三步走,人工智能必須知道的幾種深度學(xué)習(xí)算法
- 什么是人工智能領(lǐng)域的深度學(xué)習(xí)?
- 人工智能:TensorFlow深度學(xué)習(xí)框架介紹
- 人工智能:PyTorch深度學(xué)習(xí)框架介紹
- 人工智能技術(shù)全景:機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、NLP與CV的對(duì)比與協(xié)同
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:模型解釋與可解釋人工智能
- 動(dòng)手學(xué)深度學(xué)習(xí):優(yōu)化與深度學(xué)習(xí)的關(guān)系
- 《深入理解AutoML和AutoDL:構(gòu)建自動(dòng)化機(jī)器學(xué)習(xí)與深度學(xué)習(xí)平臺(tái)》 —1.1.2 弱人工智能、強(qiáng)人工智能與超人工智能