Flexus L實例
即開即用,輕松運維,開啟簡單上云第一步
立即查看
免費體驗中心
免費領(lǐng)取體驗產(chǎn)品,快速開啟云上之旅
立即前往
企業(yè)級DeepSeek
支持API調(diào)用、知識庫和聯(lián)網(wǎng)搜索,滿足企業(yè)級業(yè)務(wù)需求
立即購買
免費體驗中心
免費領(lǐng)取體驗產(chǎn)品,快速開啟云上之旅
立即前往
企業(yè)級DeepSeek
支持API調(diào)用、知識庫和聯(lián)網(wǎng)搜索,滿足企業(yè)級業(yè)務(wù)需求
立即前往
Flexus L實例
即開即用,輕松運維,開啟簡單上云第一步
立即查看
免費體驗中心
免費領(lǐng)取體驗產(chǎn)品,快速開啟云上之旅
¥0.00
元
Flexus L實例
即開即用,輕松運維,開啟簡單上云第一步
立即前往
企業(yè)級DeepSeek
支持API調(diào)用、知識庫和聯(lián)網(wǎng)搜索,滿足企業(yè)級業(yè)務(wù)需求
立即購買
- spark機(jī)器學(xué)習(xí)模型部署 內(nèi)容精選 換一換
-
需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類 3. 機(jī)器學(xué)習(xí)的整體流程來自:百科越來越重要。其中,Spark是當(dāng)今應(yīng)用最為廣泛通用的大數(shù)據(jù)先進(jìn)技術(shù)之一。BoostKit大數(shù)據(jù)使能套件提供了Spark性能改進(jìn)的各種優(yōu)化技術(shù),包括優(yōu)化的機(jī)器學(xué)習(xí)算法,從而實現(xiàn)Spark性能倍級提升。 內(nèi)容大綱: 1. 大數(shù)據(jù)機(jī)器學(xué)習(xí)算法發(fā)展歷程; 2. 機(jī)器學(xué)習(xí)算法優(yōu)化的技術(shù)挑戰(zhàn);來自:百科
- spark機(jī)器學(xué)習(xí)模型部署 相關(guān)內(nèi)容
-
第7章 有監(jiān)督學(xué)習(xí)-決策樹 第8章 有監(jiān)督學(xué)習(xí)-集成算法概述 第9章 有監(jiān)督學(xué)習(xí)-Bagging 第10章 有監(jiān)督學(xué)習(xí)-隨機(jī)森林 第11章 有監(jiān)督學(xué)習(xí)-Boosting 第12章 有監(jiān)督學(xué)習(xí)-Adaboost 第13章 有監(jiān)督學(xué)習(xí)-GBDT 第14章 有監(jiān)督學(xué)習(xí)-Xgboost 第15章來自:百科
- spark機(jī)器學(xué)習(xí)模型部署 更多內(nèi)容
-
MRS Spark服務(wù)介紹 MRS Spark服務(wù)介紹 華為云MapReduce服務(wù)(MRS)提供可控的企業(yè)級大數(shù)據(jù)集群云服務(wù),可輕松運行Hadoop、Spark、HBase、Flume等大數(shù)據(jù)組件,具有企業(yè)級、易運維、高安全和低成本等產(chǎn)品優(yōu)勢。 華為云MapReduce服務(wù)(MR來自:專題AI開發(fā)平臺 ModelArts ModelArts是面向開發(fā)者的一站式AI開發(fā)平臺,為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動化標(biāo)注、大規(guī)模分布式Training、自動化模型生成,及端-邊-云模型按需部署能力,幫助用戶快速創(chuàng)建和部署模型,管理全周期AI工作流。 產(chǎn)品詳情立即注冊一元域名華為 云桌面 [來自:百科BS,從 OBS 導(dǎo)入模型創(chuàng)建為AI應(yīng)用。 制作模型包,則需要符合一定的模型包規(guī)范。模型包里面必需包含“model”文件夾,“model”文件夾下面放置模型文件,模型配置文件,模型推理代碼文件。 模型包結(jié)構(gòu)示例(以TensorFlow模型包結(jié)構(gòu)為例) 發(fā)布該模型時只需要指定到“ocr”目錄。來自:專題Spark SQL作業(yè)的特點與功能 Spark SQL作業(yè)的特點與功能 數(shù)據(jù)湖探索 DLI是完全兼容Apache Spark,也支持標(biāo)準(zhǔn)的Spark SQL作業(yè), DLI 在開源Spark基礎(chǔ)上進(jìn)行了大量的性能優(yōu)化與服務(wù)化改造,不僅兼容Apache Spark生態(tài)和接口,性能較開源提升了2來自:專題ModelArts模型訓(xùn)練 ModelArts模型訓(xùn)練簡介 ModelArts模型訓(xùn)練,俗稱“建模”,指通過分析手段、方法和技巧對準(zhǔn)備好的數(shù)據(jù)進(jìn)行探索分析,從中發(fā)現(xiàn)因果關(guān)系、內(nèi)部聯(lián)系和業(yè)務(wù)規(guī)律,為商業(yè)目的提供決策參考。訓(xùn)練模型的結(jié)果通常是一個或多個機(jī)器學(xué)習(xí)或深度學(xué)習(xí)模型,模型可以應(yīng)用到新的數(shù)據(jù)中,得到預(yù)測、評價等結(jié)果。來自:專題實時查詢;作業(yè)開發(fā)可支持 CDM 、SQL、MR、Shell、MLS、Spark等多種數(shù)據(jù)處理節(jié)點,提供豐富的調(diào)度配置策略與海量的作業(yè)調(diào)度能力。 全鏈路 數(shù)據(jù)治理 管控 數(shù)據(jù)全生命周期管控,提供數(shù)據(jù)規(guī)范定義及可視化的模型設(shè)計,智能化的幫助用戶生成數(shù)據(jù)處理代碼,數(shù)據(jù)處理全流程質(zhì)量監(jiān)控,異常事件實時通知。來自:百科),支持 IAM 細(xì)粒度授權(quán) 基因行業(yè) 基因數(shù)據(jù)處理 現(xiàn)在基因行業(yè)有很多基于Spark分布式框架的第三方分析庫,如ADAM、Hail等 痛點: •安裝ADAM、Hail等分析庫比較復(fù)雜 •每次新建集群都需要安裝一遍 優(yōu)勢 支持自定義鏡像 支持基于基礎(chǔ)鏡像打包ADAM、Hail等第三方來自:百科
看了本文的人還看了
- 《Spark機(jī)器學(xué)習(xí)進(jìn)階實戰(zhàn)》——3.4.3 訓(xùn)練模型
- 《Spark機(jī)器學(xué)習(xí)進(jìn)階實戰(zhàn)》——3.2.3 SVM模型
- 《Spark機(jī)器學(xué)習(xí)進(jìn)階實戰(zhàn)》——3構(gòu)建分類模型
- 《Spark機(jī)器學(xué)習(xí)進(jìn)階實戰(zhàn)》——3.4.4 模型性能評估
- 《Spark機(jī)器學(xué)習(xí)進(jìn)階實戰(zhàn)》——3.5 其他分類模型
- 《Spark機(jī)器學(xué)習(xí)進(jìn)階實戰(zhàn)》——3.2.2 樸素貝葉斯模型
- 《Spark機(jī)器學(xué)習(xí)進(jìn)階實戰(zhàn)》——3.2 分類模型算法
- 《Spark機(jī)器學(xué)習(xí)進(jìn)階實戰(zhàn)》——2.2.5 模型訓(xùn)練與評估
- 《Spark機(jī)器學(xué)習(xí)進(jìn)階實戰(zhàn)》——3.2.4 決策樹模型
- 《Spark機(jī)器學(xué)習(xí)進(jìn)階實戰(zhàn)》——3.4.5 模型參數(shù)調(diào)優(yōu)