- 深度學(xué)習(xí)之tensorflow入門 內(nèi)容精選 換一換
-
0系列課程。本課程將主要講述為什么是深度學(xué)習(xí)框架、深度學(xué)習(xí)框架的優(yōu)勢并介紹二種深度學(xué)習(xí) 框架,包括Pytorch和TensorFlow。接下來會結(jié)合代碼詳細(xì)講解TensorFlow 2的基 礎(chǔ)操作與常用模塊的使用。最后將通過基于TensorFlow的MNIST手寫體數(shù)字的實(shí) 驗(yàn),加深地對深度學(xué)習(xí)建模流程的理解與熟悉度。來自:百科
- 深度學(xué)習(xí)之tensorflow入門 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識 零門檻入門數(shù)據(jù)庫學(xué)習(xí) 零門檻入門數(shù)據(jù)庫學(xué)習(xí) 時間:2020-11-23 16:42:27 數(shù)據(jù)庫是計(jì)算機(jī)科學(xué)中發(fā)展久遠(yuǎn)的一門技術(shù)。從上世紀(jì)60年代初誕生至今為止,已經(jīng)將近60年。從早期單純的對數(shù)據(jù)文件的保存和處理,發(fā)展出以數(shù)據(jù)建模和數(shù)據(jù)庫管理系統(tǒng)為核心技術(shù)的一來自:百科華為云計(jì)算 云知識 華為云API入門學(xué)習(xí)賽探險(xiǎn)尋寶之旅 華為云API入門學(xué)習(xí)賽探險(xiǎn)尋寶之旅 時間:2020-12-09 14:32:54 華為云API入門學(xué)習(xí)賽·探險(xiǎn)尋寶之旅是面向所有基于華為云的開發(fā)者的入門實(shí)戰(zhàn)賽。 【賽事背景】 華為云已經(jīng)成為全球主要云服務(wù)供應(yīng)商,在華為云上開放了2400+來自:百科
- 深度學(xué)習(xí)之tensorflow入門 更多內(nèi)容
-
華為云計(jì)算 云知識 華為云API入門學(xué)習(xí)賽AI 人臉識別 華為云API入門學(xué)習(xí)賽AI人臉識別 時間:2020-12-09 11:47:10 華為云API入門學(xué)習(xí)賽·AI人臉識別,本賽事適用于了解華為云的API、以及學(xué)習(xí)基于華為云進(jìn)行開發(fā)的初學(xué)者,目標(biāo)是為華為云的開發(fā)者提供一個了解華為云Open來自:百科
華為云計(jì)算 云知識 【云小課】EI第26課 MRS 基礎(chǔ)入門之Hive組件介紹 【云小課】EI第26課 MRS基礎(chǔ)入門之Hive組件介紹 時間:2021-07-09 09:36:18 云小課 MapReduce Hive是建立在Hadoop上的 數(shù)據(jù)倉庫 框架,提供大數(shù)據(jù)平臺批處理計(jì)算來自:百科
華為云計(jì)算 云知識 【云小課】EI第25課 MRS基礎(chǔ)入門之HBase組件介紹 【云小課】EI第25課 MRS基礎(chǔ)入門之HBase組件介紹 時間:2021-07-09 10:49:46 云小課 MapReduce服務(wù) HBase是一個開源的、面向列(Column-Oriented來自:百科
GPU內(nèi)置硬件視頻編解碼引擎,能夠同時進(jìn)行35路高清視頻解碼與實(shí)時推理 常規(guī)支持軟件列表 Pi1實(shí)例主要用于GPU推理計(jì)算場景,例如圖片識別、 語音識別 等場景。 常用的軟件支持列表如下: Tensorflow、Caffe、PyTorch、MXNet等深度學(xué)習(xí)框架 推理加速型Pi2來自:百科
算能力,可以使用P1型云服務(wù)器。常用的軟件支持列表如下: Tensorflow、Caffe、PyTorch、MXNet等深度學(xué)習(xí)框架 RedShift for Autodesk 3dsMax、V-Ray for 3ds Max Agisoft PhotoScan MapD 彈性云服務(wù)器來自:百科
- 《深度學(xué)習(xí)之TensorFlow入門、原理與進(jìn)階實(shí)戰(zhàn)》— 3 TensorFlow基本開發(fā)步驟
- 《深度學(xué)習(xí)之TensorFlow入門、原理與進(jìn)階實(shí)戰(zhàn)》—1.3 TensorFlow的特點(diǎn)
- 《深度學(xué)習(xí)之TensorFlow入門、原理與進(jìn)階實(shí)戰(zhàn)》—3.3.10 測試模型
- 《深度學(xué)習(xí)之TensorFlow入門、原理與進(jìn)階實(shí)戰(zhàn)》—3.3.11 使用模型
- 《深度學(xué)習(xí)之TensorFlow入門、原理與進(jìn)階實(shí)戰(zhàn)》—3.3.6 定義“運(yùn)算”
- 《深度學(xué)習(xí)之TensorFlow入門、原理與進(jìn)階實(shí)戰(zhàn)》—1.5.2 如何學(xué)習(xí)本書
- 《深度學(xué)習(xí)之TensorFlow入門、原理與進(jìn)階實(shí)戰(zhàn)》—3.1.4 使用模型
- 《深度學(xué)習(xí)之TensorFlow入門、原理與進(jìn)階實(shí)戰(zhàn)》—2.3.3 測試顯卡
- 《深度學(xué)習(xí)之TensorFlow入門、原理與進(jìn)階實(shí)戰(zhàn)》—1.2 TensorFlow是做什么的
- 《深度學(xué)習(xí)之TensorFlow入門、原理與進(jìn)階實(shí)戰(zhàn)》—3.3 了解TensorFlow開發(fā)的基本步驟