- 深度學(xué)習(xí)樣本標(biāo)注價格 內(nèi)容精選 換一換
-
來自:百科華為云計算 云知識 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識,其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科
- 深度學(xué)習(xí)樣本標(biāo)注價格 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時間:2020-12-09 14:52:19 以當(dāng)今研究趨勢由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來自:百科來自:百科
- 深度學(xué)習(xí)樣本標(biāo)注價格 更多內(nèi)容
-
華為云計算 云知識 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時間:2020-12-08 10:34:34 本課程旨基于自動售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺來自:百科成對視頻的標(biāo)注操作,也可以對已標(biāo)注視頻修改或刪除標(biāo)簽進(jìn)行重新標(biāo)注。 了解更多 數(shù)據(jù)管理 -智能標(biāo)注 除了人工標(biāo)注外,ModelArts數(shù)據(jù)管理平臺還提供了智能標(biāo)注功能,快速完成數(shù)據(jù)標(biāo)注,為您節(jié)省70%以上的標(biāo)注時間。數(shù)據(jù)管理中的智能標(biāo)注是指基于當(dāng)前標(biāo)注階段的標(biāo)簽及圖片學(xué)習(xí)訓(xùn)練,選中來自:專題》。 Demo體驗(yàn) 文字識別 產(chǎn)品優(yōu)勢 文字識別 識別精準(zhǔn)度高 采用先進(jìn)的自研深度學(xué)習(xí)算法,結(jié)合億萬級海量標(biāo)注數(shù)據(jù)樣本訓(xùn)練,針對各種業(yè)務(wù)場景優(yōu)化 采用先進(jìn)的自研深度學(xué)習(xí)算法,結(jié)合億萬級海量標(biāo)注數(shù)據(jù)樣本訓(xùn)練,針對各種業(yè)務(wù)場景優(yōu)化 文字識別 穩(wěn)定服務(wù) 華為云 OCR 成功應(yīng)用于各類場景,來自:專題視頻編輯 等七種服務(wù)。具體而言,華為云通用AI解決方案的特點(diǎn)如下: 1. 超高性能:華為云通用AI解決方案采用了先進(jìn)的自研深度學(xué)習(xí)算法,結(jié)合億萬級海量標(biāo)注數(shù)據(jù)樣本訓(xùn)練,針對各種業(yè)務(wù)場景優(yōu)化,使得各項服務(wù)的準(zhǔn)確率和速度都達(dá)到了業(yè)界領(lǐng)先水平。 2. 簡單易用:華為云通用AI解決方案提供來自:百科圖1功能總覽 ModelArts特色功能如下所示: 數(shù)據(jù)治理 支持?jǐn)?shù)據(jù)篩選、標(biāo)注等數(shù)據(jù)處理,提供數(shù)據(jù)集版本管理,特別是深度學(xué)習(xí)的大數(shù)據(jù)集,讓訓(xùn)練結(jié)果可重現(xiàn)。 極“快”致“簡”模型訓(xùn)練 自研的MoXing深度學(xué)習(xí)框架,更高效更易用,大大提升訓(xùn)練速度。 云邊端多場景部署 支持模型部署到多來自:百科支持自定義鏡像滿足自定義框架及算子需求。 AI開發(fā)平臺 ModelArts ModelArts是面向開發(fā)者的一站式AI開發(fā)平臺,為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動化標(biāo)注、大規(guī)模分布式Training、自動化模型生成,及端-邊-云模型按需部署能力,幫助用戶快速創(chuàng)建和部署模型,管理全周期AI工作流。來自:百科
- 深度學(xué)習(xí)標(biāo)注工具Labelme的使用
- 深度學(xué)習(xí)煉丹-不平衡樣本的處理
- 【小樣本學(xué)習(xí)】小樣本學(xué)習(xí)概述
- 使用Python實(shí)現(xiàn)智能食品價格預(yù)測的深度學(xué)習(xí)模型
- PaddleNLPUIE--小樣本快速提升性能(含doccona標(biāo)注
- 《AI安全之對抗樣本入門》—1 深度學(xué)習(xí)基礎(chǔ)知識
- 《AI安全之對抗樣本入門》—3 常見深度學(xué)習(xí)平臺簡介
- AI Earth——AI模型訓(xùn)練:如何正確的進(jìn)行樣本點(diǎn)標(biāo)注?
- 技術(shù)綜述二:標(biāo)注數(shù)據(jù)不足下的深度學(xué)習(xí)方法概述
- 小樣本學(xué)習(xí)總結(jié)(一)