- 深度學(xué)習(xí)特征點(diǎn)檢測(cè) 內(nèi)容精選 換一換
-
來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類(lèi)型以及深度學(xué)習(xí)工程中常見(jiàn)的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科
- 深度學(xué)習(xí)特征點(diǎn)檢測(cè) 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來(lái)自:百科從MindSpore手寫(xiě)數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 從MindSpore手寫(xiě)數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 時(shí)間:2020-11-23 16:08:48 深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)分支之一,應(yīng)用日益廣泛。 語(yǔ)音識(shí)別 、自動(dòng) 機(jī)器翻譯 、即時(shí)視覺(jué)翻譯、刷臉支付、人臉考勤……不知不覺(jué),深度學(xué)習(xí)已經(jīng)滲入到我們生活中的每個(gè)來(lái)自:百科
- 深度學(xué)習(xí)特征點(diǎn)檢測(cè) 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣(mài)機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科
華為云計(jì)算 云知識(shí) 計(jì)算機(jī)視覺(jué)基礎(chǔ):深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò) 計(jì)算機(jī)視覺(jué)基礎(chǔ):深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò) 時(shí)間:2020-12-17 09:56:23 通過(guò)學(xué)習(xí),您將掌握計(jì)算機(jī)視覺(jué)的基本概念和主要知識(shí)點(diǎn),并且對(duì)于計(jì)算機(jī)視覺(jué)和廣義人工智能的方法論有一定的認(rèn)識(shí),初步具備判斷計(jì)算機(jī)視覺(jué)是否適合解決特定問(wèn)題的能力。來(lái)自:百科
華為云計(jì)算 云知識(shí) 華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-硬盤(pán)異常檢測(cè) 華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-硬盤(pán)異常檢測(cè) 時(shí)間:2021-01-05 11:41:15 華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-硬盤(pán)異常檢測(cè)基于網(wǎng)絡(luò)人工智能(NAIE)訓(xùn)練平臺(tái)的硬盤(pán)異常預(yù)測(cè)程序,通過(guò)機(jī)器學(xué)習(xí)構(gòu)建硬盤(pán)故障預(yù)測(cè)模型,對(duì)數(shù)據(jù)來(lái)自:百科
華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-KPI異常檢測(cè) 華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-KPI異常檢測(cè) 時(shí)間:2021-01-05 11:40:25 華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-KPI異常檢測(cè)提供某運(yùn)營(yíng)商的KPI真實(shí)數(shù)據(jù),參賽選手需要根據(jù)歷史40天異常標(biāo)簽數(shù)據(jù)(訓(xùn)練數(shù)據(jù)集),訓(xùn)練模型并檢測(cè)后續(xù)17天內(nèi)各KPI(測(cè)試數(shù)據(jù)集)中的異常。來(lái)自:百科
行保存。 老鼠檢測(cè):通過(guò)采集前端相機(jī)實(shí)時(shí)視頻,利用智能化特征分析技術(shù),在設(shè)定區(qū)域內(nèi)檢測(cè),當(dāng)檢測(cè)到老鼠后自動(dòng)告警提示同時(shí)截圖顯示老鼠出現(xiàn)位置,為管理人員及時(shí)處理提供依據(jù),保障后廚食品衛(wèi)生安全。 煤氣罐檢測(cè):通過(guò)采集前端相機(jī)實(shí)時(shí)視頻,在設(shè)定區(qū)域內(nèi)自動(dòng)檢測(cè)煤氣罐,當(dāng)檢測(cè)到煤氣罐后自動(dòng)告來(lái)自:云商店
詞庫(kù),緊跟社會(huì)熱點(diǎn)問(wèn)題,及時(shí)識(shí)別新型不合規(guī)內(nèi)容 自定義規(guī)則 接受靈活的規(guī)則定制,支持自定義關(guān)鍵詞 內(nèi)容審核 Moderation 內(nèi)容審核(Content Moderation),基于圖像、文本、視頻檢測(cè)技術(shù),可自動(dòng)進(jìn)行涉黃、廣告、涉政涉暴、涉政敏感人物等內(nèi)容檢測(cè),幫助客戶降低業(yè)務(wù)違規(guī)風(fēng)險(xiǎn)來(lái)自:百科
WAF 的防護(hù)原理是通過(guò)改變用戶域名的DNS解析地址來(lái)將Web流量牽引到華為云的WAF引擎集群,經(jīng)過(guò)檢測(cè)后再回源至真正的Web服務(wù)器。 Web防火墻產(chǎn)品部署在Web服務(wù)器的前面,串行接入,對(duì)硬件性能上要求高,但得益于云上WAF性能可彈性伸縮的特點(diǎn),通過(guò)負(fù)載均衡相當(dāng)于性能是無(wú)上限的。另外,為了不影響Web服務(wù),還提供了Bypass等功能。來(lái)自:百科
掃描服務(wù)能夠自動(dòng)發(fā)現(xiàn)并檢測(cè)主機(jī)操作系統(tǒng)、中間件等版本漏洞信息和基線配置,實(shí)時(shí)同步官網(wǎng)更新的漏洞庫(kù)匹配漏洞特征,幫助用戶及時(shí)發(fā)現(xiàn)主機(jī)安全隱患。 移動(dòng)應(yīng)用安全 對(duì)用戶提供的安卓、鴻蒙應(yīng)用進(jìn)行安全漏洞、隱私合規(guī)檢測(cè),基于靜態(tài)分析技術(shù),結(jié)合數(shù)據(jù)流靜態(tài)污點(diǎn)跟蹤,檢測(cè)權(quán)限、組件、網(wǎng)絡(luò)、等AP來(lái)自:專(zhuān)題
Developer V2.0系列課程。計(jì)算機(jī)視覺(jué)是深度學(xué)習(xí)領(lǐng)域最熱門(mén)的研究領(lǐng)域之一,它衍生出了一大批快速發(fā)展且具有實(shí)際作用的應(yīng)用,包括 人臉識(shí)別 、圖像檢測(cè)、目標(biāo)監(jiān)測(cè)以及智能駕駛等。這一切本質(zhì)都是對(duì)圖像數(shù)據(jù)進(jìn)行處理,本課程就圖像處理理論及相應(yīng)技術(shù)做了介紹,包括傳統(tǒng)特征提取算法和卷積神經(jīng)網(wǎng)絡(luò),學(xué)習(xí)時(shí)注意兩者的區(qū)別。來(lái)自:百科
- 旋轉(zhuǎn)目標(biāo)檢測(cè) 校準(zhǔn)的深度特征用于目標(biāo)檢測(cè)SSA
- 深度學(xué)習(xí)閱讀導(dǎo)航 | 04 FPN:基于特征金字塔網(wǎng)絡(luò)的目標(biāo)檢測(cè)
- 學(xué)習(xí)記錄------------------圖像特征計(jì)算Harris角點(diǎn)檢測(cè)和Sift
- OpenCV 特征點(diǎn)檢測(cè)與圖像匹配
- 語(yǔ)音情感識(shí)別之手工特征深度學(xué)習(xí)方法
- 《深度剖析:特征工程—機(jī)器學(xué)習(xí)的隱秘基石》
- 基于深度學(xué)習(xí)的油藏地質(zhì)特征提取方法
- 《深度剖析:特征工程—機(jī)器學(xué)習(xí)的隱秘基石》
- OpenCV中的深度學(xué)習(xí)車(chē)輛檢測(cè)
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 基于ResNet的人臉關(guān)鍵點(diǎn)檢測(cè)