- 深度學(xué)習(xí) 人臉特征點(diǎn) 內(nèi)容精選 換一換
-
來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科
- 深度學(xué)習(xí) 人臉特征點(diǎn) 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來(lái)自:百科從MindSpore手寫數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 從MindSpore手寫數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 時(shí)間:2020-11-23 16:08:48 深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)分支之一,應(yīng)用日益廣泛。 語(yǔ)音識(shí)別 、自動(dòng) 機(jī)器翻譯 、即時(shí)視覺翻譯、刷臉支付、人臉考勤……不知不覺,深度學(xué)習(xí)已經(jīng)滲入到我們生活中的每個(gè)來(lái)自:百科
- 深度學(xué)習(xí) 人臉特征點(diǎn) 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科華為云計(jì)算 云知識(shí) 計(jì)算機(jī)視覺基礎(chǔ):深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò) 計(jì)算機(jī)視覺基礎(chǔ):深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò) 時(shí)間:2020-12-17 09:56:23 通過(guò)學(xué)習(xí),您將掌握計(jì)算機(jī)視覺的基本概念和主要知識(shí)點(diǎn),并且對(duì)于計(jì)算機(jī)視覺和廣義人工智能的方法論有一定的認(rèn)識(shí),初步具備判斷計(jì)算機(jī)視覺是否適合解決特定問(wèn)題的能力。來(lái)自:百科Developer V2.0系列課程。計(jì)算機(jī)視覺是深度學(xué)習(xí)領(lǐng)域最熱門的研究領(lǐng)域之一,它衍生出了一大批快速發(fā)展且具有實(shí)際作用的應(yīng)用,包括人臉識(shí)別、圖像檢測(cè)、目標(biāo)監(jiān)測(cè)以及智能駕駛等。這一切本質(zhì)都是對(duì)圖像數(shù)據(jù)進(jìn)行處理,本課程就圖像處理理論及相應(yīng)技術(shù)做了介紹,包括傳統(tǒng)特征提取算法和卷積神經(jīng)網(wǎng)絡(luò),學(xué)習(xí)時(shí)注意兩者的區(qū)別。來(lái)自:百科基于ModelArts實(shí)現(xiàn)人臉識(shí)別 基于ModelArts實(shí)現(xiàn)人臉識(shí)別 時(shí)間:2020-12-02 11:19:20 本實(shí)驗(yàn)指導(dǎo)用戶在華為云ModelArts平臺(tái)對(duì)預(yù)置的模型進(jìn)行重訓(xùn)練,快速構(gòu)建人臉識(shí)別應(yīng)用。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 掌握MXNet AI引擎用法; 掌握基于MXNet構(gòu)建人臉識(shí)別神經(jīng)網(wǎng)絡(luò);來(lái)自:百科
- OpenCV中的深度學(xué)習(xí)人臉檢測(cè)
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 基于ResNet的人臉關(guān)鍵點(diǎn)檢測(cè)
- 使用dlib庫(kù)進(jìn)行人臉檢測(cè)與特征點(diǎn)提取使用dlib庫(kù)進(jìn)行人臉檢測(cè)與特征點(diǎn)提取
- 機(jī)器學(xué)習(xí)(四)降維之NMF及人臉特征提取
- 人臉檢測(cè)實(shí)戰(zhàn):使用opencv加載深度學(xué)習(xí)模型實(shí)現(xiàn)人臉檢測(cè)
- 《深度剖析:特征工程—機(jī)器學(xué)習(xí)的隱秘基石》
- 語(yǔ)音情感識(shí)別之手工特征深度學(xué)習(xí)方法
- 基于深度學(xué)習(xí)的油藏地質(zhì)特征提取方法
- 《深度剖析:特征工程—機(jī)器學(xué)習(xí)的隱秘基石》
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:人臉識(shí)別與人臉表情分析