- 深度學(xué)習(xí)tensorflow課程 內(nèi)容精選 換一換
-
越了人類的水平。本課程將介紹深度學(xué)習(xí)算法的知識(shí)。 課程簡(jiǎn)介 本課程將會(huì)探討深度學(xué)習(xí)中的基礎(chǔ)理論、算法、使用方法、技巧與不同的深度學(xué)習(xí)模型。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、掌握神經(jīng)網(wǎng)絡(luò)基礎(chǔ)理論。 2、掌握深度學(xué)習(xí)中數(shù)據(jù)處理的基本方法。 3、掌握深度學(xué)習(xí)訓(xùn)練中調(diào)參、模型選擇的基本方法。來自:百科來自:百科
- 深度學(xué)習(xí)tensorflow課程 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科法和應(yīng)用示例。 課程簡(jiǎn)介 本課程介紹了雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例,讓你對(duì)雙向深度學(xué)習(xí)有初步的認(rèn)知。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、認(rèn)識(shí)雙向智能。 2、了解深度雙向智能的理論、算法和應(yīng)用示例。 課程大綱 第1章 引言 第2章 雙向智能 第3章 深度雙向智能 華為云來自:百科
- 深度學(xué)習(xí)tensorflow課程 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過程。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來自:百科GaussDB 課程認(rèn)證流程 HCIE-GaussDB認(rèn)證簡(jiǎn)介 學(xué)習(xí)培訓(xùn) 您可以通過GaussDB認(rèn)證在線課程的學(xué)習(xí),隨時(shí)隨地掌握基礎(chǔ)知識(shí),了解華為云實(shí)踐應(yīng)用,點(diǎn)擊此處開始在線學(xué)習(xí)教程 在線實(shí)驗(yàn) 完成理論知識(shí)學(xué)習(xí)后結(jié)合GaussDB認(rèn)證實(shí)驗(yàn)手冊(cè)在線實(shí)操,鞏固學(xué)習(xí),點(diǎn)擊此處下載學(xué)習(xí)手冊(cè) 模擬測(cè)試來自:專題優(yōu)良整體實(shí)例規(guī)格:合理的CPU內(nèi)存配比、高速Nvme盤。實(shí)例在深度學(xué)習(xí),需要大量磁盤高速緩存領(lǐng)域。具有明顯性能優(yōu)勢(shì) 優(yōu)良性價(jià)比:繼承E CS 的優(yōu)勢(shì)、包括彈性、易運(yùn)維等等。同時(shí)充分利用GPU摩爾定律紅利。業(yè)務(wù)可以快速跟隨硬件發(fā)展。 文中課程 更多精彩課程、微認(rèn)證、沙箱實(shí)驗(yàn),盡在華為云學(xué)院 彈性云服務(wù)器 ECS:輕松上云第一步來自:百科
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.2.4 TensorFlow
- TF學(xué)習(xí)——TensorFlow:深度學(xué)習(xí)框架TensorFlow & TensorFlow-GPU的簡(jiǎn)介、安裝詳細(xì)攻略
- 深度學(xué)習(xí)框架tensorflow——華為AI學(xué)習(xí)筆記16
- TensorFlow vs. PyTorch:深度學(xué)習(xí)框架之爭(zhēng)
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——2TensorFlow深度學(xué)習(xí)框
- 深度學(xué)習(xí)框架(如:Pytorch、Tensorflow、Caffe...)
- <深度學(xué)習(xí)入門與TensorFlow實(shí)踐> - 筆記 III
- <深度學(xué)習(xí)入門與TensorFlow實(shí)踐> - 筆記 I
- <深度學(xué)習(xí)入門與TensorFlow實(shí)踐> - 筆記 II
- 基于TensorFlow的深度學(xué)習(xí)模型優(yōu)化策略