- 深度學(xué)習(xí) 特征選擇 內(nèi)容精選 換一換
-
來自:百科華為云計(jì)算 云知識 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識,其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科
- 深度學(xué)習(xí) 特征選擇 相關(guān)內(nèi)容
-
來自:百科大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來自:百科
- 深度學(xué)習(xí) 特征選擇 更多內(nèi)容
-
華為云計(jì)算 云知識 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺來自:百科
華為云計(jì)算 云知識 為什么選擇E CS ? 為什么選擇ECS? 時(shí)間:2021-07-01 10:32:05 云計(jì)算 ECS具有以下功能: 1、類型豐富: 多規(guī)格類型、多鏡像類型、多磁盤種類。 豐富的規(guī)格類型:提供多種類型的 彈性云服務(wù)器 ,可滿足不同的使用場景,每種類型的彈性云服務(wù)器包含多種規(guī)格,同時(shí)支持規(guī)格變更。來自:百科
華為云計(jì)算 云知識 如何選擇DAYU版本 如何選擇DAYU版本 時(shí)間:2020-09-09 09:37:16 智能數(shù)據(jù)湖 運(yùn)營平臺(DAYU)是為了應(yīng)對上述挑戰(zhàn)、針對企業(yè)數(shù)字化運(yùn)營訴求提供的數(shù)據(jù)全生命周期管理、具有智能 數(shù)據(jù)管理 能力的一站式治理運(yùn)營平臺,包含數(shù)據(jù)集成、規(guī)范設(shè)計(jì)、數(shù)據(jù)開來自:百科
手把手教你玩轉(zhuǎn) 人臉識別 ,初探深度學(xué)習(xí)。 課程簡介 本課程主要內(nèi)容包括:人臉識別原理、機(jī)器如何提取圖像的特征。 課程目標(biāo) 通過本課程學(xué)習(xí),了解機(jī)器學(xué)習(xí)的方法及快速掌握人臉識別應(yīng)用。 課程大綱 第1節(jié) 機(jī)器學(xué)習(xí)內(nèi)容回顧 第2節(jié) 機(jī)器是如何進(jìn)行圖像分類 第3節(jié) 圖像的特征提取 第4節(jié) 初探深度學(xué)習(xí) 第5節(jié)來自:百科
什么是 圖像搜索 什么是圖像搜索 時(shí)間:2020-09-16 11:27:14 圖像搜索( Image Search )基于深度學(xué)習(xí)與 圖像識別 技術(shù),結(jié)合不同應(yīng)用業(yè)務(wù)和行業(yè)場景,利用特征向量化與搜索能力,幫助您從指定圖庫中搜索相同或相似的圖片。 圖像搜索服務(wù)以開放API(Application Programming來自:百科
需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類 3. 機(jī)器學(xué)習(xí)的整體流程來自:百科
- 學(xué)習(xí)筆記|決策樹的特征選擇
- sklearn特征的選擇
- 【進(jìn)階版】 機(jī)器學(xué)習(xí)之稀疏學(xué)習(xí)、特征選擇、過濾式選擇、包裹式選擇、正則化等(18)
- 《Python大規(guī)模機(jī)器學(xué)習(xí)》—3.3 ?正則化特征選擇
- 《Python大規(guī)模機(jī)器學(xué)習(xí)》 —3.3正則化特征選擇
- 深度學(xué)習(xí)核心技術(shù)精講100篇(六十四)-特征選擇原理及應(yīng)用實(shí)戰(zhàn)案例
- 特征選擇常用算法綜述
- 特征選擇常用算法綜述
- Sklearn中級教程——特征選擇
- 【AI基礎(chǔ)】特征工程(上)之特征選擇