- 深度學(xué)習(xí) 模型訓(xùn)練出來(lái)怎么用 內(nèi)容精選 換一換
-
來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類(lèi)型以及深度學(xué)習(xí)工程中常見(jiàn)的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科
- 深度學(xué)習(xí) 模型訓(xùn)練出來(lái)怎么用 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來(lái)自:百科從MindSpore手寫(xiě)數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 從MindSpore手寫(xiě)數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 時(shí)間:2020-11-23 16:08:48 深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)分支之一,應(yīng)用日益廣泛。 語(yǔ)音識(shí)別 、自動(dòng) 機(jī)器翻譯 、即時(shí)視覺(jué)翻譯、刷臉支付、人臉考勤……不知不覺(jué),深度學(xué)習(xí)已經(jīng)滲入到我們生活中的每個(gè)來(lái)自:百科
- 深度學(xué)習(xí) 模型訓(xùn)練出來(lái)怎么用 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣(mài)機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科ModelArts模型訓(xùn)練 ModelArts模型訓(xùn)練簡(jiǎn)介 ModelArts模型訓(xùn)練,俗稱“建模”,指通過(guò)分析手段、方法和技巧對(duì)準(zhǔn)備好的數(shù)據(jù)進(jìn)行探索分析,從中發(fā)現(xiàn)因果關(guān)系、內(nèi)部聯(lián)系和業(yè)務(wù)規(guī)律,為商業(yè)目的提供決策參考。訓(xùn)練模型的結(jié)果通常是一個(gè)或多個(gè)機(jī)器學(xué)習(xí)或深度學(xué)習(xí)模型,模型可以應(yīng)用到新的數(shù)據(jù)中,得到預(yù)測(cè)、評(píng)價(jià)等結(jié)果。來(lái)自:專(zhuān)題CDN HTTPS配置 01:27 CDN HTTPS配置 CDN緩存配置 03:21 CDN緩存配置 CDN怎么用常見(jiàn)問(wèn)題解答 CDN怎么用常見(jiàn)問(wèn)題解答 CDN怎么用,如何開(kāi)通CDN服務(wù)? 如果您需要購(gòu)買(mǎi)并使用CDN,請(qǐng)參考以下流程: 您需要注冊(cè)華為云帳號(hào),完成實(shí)名認(rèn)證(國(guó)際站用來(lái)自:專(zhuān)題華為云計(jì)算 云知識(shí) 推理模型的遷移與調(diào)優(yōu) 推理模型的遷移與調(diào)優(yōu) 時(shí)間:2020-12-08 10:39:19 本課程主要介紹如何將第三方框架訓(xùn)練出來(lái)的模型轉(zhuǎn)換成昇騰專(zhuān)用模型,并進(jìn)行調(diào)優(yōu)。 目標(biāo)學(xué)員 AI領(lǐng)域的開(kāi)發(fā)者 課程目標(biāo) 通過(guò)對(duì)教材的解讀+實(shí)戰(zhàn)演示,使學(xué)員學(xué)會(huì)使用模型轉(zhuǎn)換工具遷移所需要的預(yù)訓(xùn)練模型。來(lái)自:百科安全穩(wěn)定。 WAF 怎么用 購(gòu)買(mǎi)WAF后,在WAF管理控制臺(tái)將網(wǎng)站添加并接入WAF。網(wǎng)站成功接入WAF后,網(wǎng)站所有訪問(wèn)請(qǐng)求將先流轉(zhuǎn)到WAF,WAF檢測(cè)過(guò)濾惡意攻擊流量后,將正常流量返回給源站,從而確保源站安全、穩(wěn)定、可用。 了解WAF WAF管理控制臺(tái) WAF怎么收費(fèi) 華為云WAF計(jì)費(fèi)項(xiàng)來(lái)自:專(zhuān)題華為云計(jì)算 云知識(shí) WeLink 智能助手怎么用 WeLink智能助手怎么用 時(shí)間:2020-11-23 17:26:22 華為云WeLink作為一款移動(dòng)辦公軟件,內(nèi)置小微語(yǔ)音助手,讓我們看看小微可以做些什么: 找人何必點(diǎn)來(lái)點(diǎn)去?用小微一句話搞定 ·公司同事重名太多怕找錯(cuò)人? 立馬找到你想要的那個(gè)TA。來(lái)自:百科登錄成功后,點(diǎn)擊網(wǎng)站上方學(xué)習(xí)中心,看到學(xué)習(xí)的課程。 學(xué)生查看學(xué)習(xí)的課程如下圖所示: 3 課程學(xué)習(xí) 3.1 課程內(nèi)容學(xué)習(xí) 點(diǎn)擊課程圖片,進(jìn)入課程主頁(yè)學(xué)習(xí) 章節(jié)導(dǎo)航中,可以看到課程安排需要學(xué)習(xí)的內(nèi)容,如下圖所示 課程內(nèi)容包含:視頻,文檔,網(wǎng)頁(yè),附件,測(cè)驗(yàn)和作業(yè)。 點(diǎn)擊去學(xué)習(xí),可以學(xué)習(xí)該內(nèi)容,視頻學(xué)習(xí)如下圖所示來(lái)自:云商店Z部署,數(shù)據(jù)0丟失,支持1000+擴(kuò)展能力,PB級(jí)海量存儲(chǔ)等特性。 GaussDB數(shù)據(jù)庫(kù) 怎么用常見(jiàn)問(wèn)題 GaussDB 數(shù)據(jù)庫(kù)怎么用常見(jiàn)問(wèn)題 當(dāng)業(yè)務(wù)壓力過(guò)大時(shí),備機(jī)的回放速度跟不上主機(jī)的速度如何處理? 問(wèn)題描述 當(dāng)業(yè)務(wù)壓力過(guò)大時(shí),備機(jī)的回放速度跟不上主機(jī)的速度。在系統(tǒng)長(zhǎng)時(shí)間的運(yùn)行后來(lái)自:專(zhuān)題域點(diǎn)擊跳轉(zhuǎn)后內(nèi)容的確是隱私聲明。我們使用了LDA主題模型來(lái)判斷文本內(nèi)容是否是隱私政策。通過(guò)驗(yàn)證的樣本都收納到數(shù)據(jù)集中,然后用這些標(biāo)注數(shù)據(jù)進(jìn)行第一版的目標(biāo)識(shí)別模型訓(xùn)練。 訓(xùn)練出來(lái)的模型只是利用傳統(tǒng)圖像處理能夠識(shí)別成功的圖片進(jìn)行學(xué)習(xí)。對(duì)于不成功的圖片,我們進(jìn)一步使用 OCR 。OCR能夠來(lái)自:百科
- 《深度學(xué)習(xí)之TensorFlow入門(mén)、原理與進(jìn)階實(shí)戰(zhàn)》—3.2 模型是如何訓(xùn)練出來(lái)的
- 深度學(xué)習(xí)模型編譯技術(shù)
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- 深度學(xué)習(xí)-通用模型調(diào)試技巧
- 利用深度學(xué)習(xí)建立流失模型
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:Transformer模型
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:遷移學(xué)習(xí)與預(yù)訓(xùn)練模型
- 深度解析與學(xué)習(xí)應(yīng)用-模型樹(shù)
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:元學(xué)習(xí)與模型無(wú)關(guān)優(yōu)化(MAML)
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:模型安全與防御