- 深度學(xué)習(xí)與訓(xùn)練模型 內(nèi)容精選 換一換
-
華為云ModelArts助力 AI開(kāi)發(fā)平臺(tái) —ModelArts SDK打通本地IDE與云端訓(xùn)練資源 【手摸手學(xué)ModelArts】?jī)尚忻瞰@取ModelArts正版實(shí)戰(zhàn)教程 【我與ModelArts的故事】使用ModelArts搭建"人臉顏值評(píng)分"服務(wù) 我與ModelArts的故事 查看更多 收起來(lái)自:專題來(lái)自:百科
- 深度學(xué)習(xí)與訓(xùn)練模型 相關(guān)內(nèi)容
-
需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:描述神經(jīng)網(wǎng)絡(luò)的定義與發(fā)展;熟悉深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的重要“部件”;熟悉神經(jīng)網(wǎng)絡(luò)的訓(xùn)練與優(yōu)化;描述深度學(xué)習(xí)中常見(jiàn)的問(wèn)題。 課程大綱 1. 深度學(xué)習(xí)簡(jiǎn)介 2. 訓(xùn)練法則 3.來(lái)自:百科華為云計(jì)算 云知識(shí) 模型訓(xùn)練與平臺(tái)部署(Mindspore-TF) 模型訓(xùn)練與平臺(tái)部署(Mindspore-TF) 時(shí)間:2020-12-08 16:37:45 本課程主要介紹如何讓TensorFlow腳本運(yùn)行在昇騰910處理器上,并進(jìn)行精度、性能等方面的調(diào)優(yōu)。 目標(biāo)學(xué)員 AI領(lǐng)域的開(kāi)發(fā)者來(lái)自:百科
- 深度學(xué)習(xí)與訓(xùn)練模型 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科何使用深度學(xué)習(xí)框架MindSpore進(jìn)行模型開(kāi)發(fā)與訓(xùn)練?又如何在ModelArts平臺(tái)訓(xùn)練一個(gè)可以用于識(shí)別手寫數(shù)字的模型呢?讓我們來(lái)一探究竟吧。 數(shù)據(jù)集的選擇與準(zhǔn)備 機(jī)器學(xué)習(xí)中的傳統(tǒng)機(jī)器學(xué)習(xí)和深度學(xué)習(xí)都是數(shù)據(jù)驅(qū)動(dòng)的研究領(lǐng)域,需要基于大量的歷史數(shù)據(jù)對(duì)模型進(jìn)行訓(xùn)練,再使用模型對(duì)新的數(shù)來(lái)自:百科工智能的相關(guān)內(nèi)容與應(yīng)用。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 通過(guò)本實(shí)驗(yàn)將了解如何使用Keras和Tensorflow構(gòu)建DFCNN的 語(yǔ)音識(shí)別 神經(jīng)網(wǎng)絡(luò),并且熟悉整個(gè)處理流程,包括數(shù)據(jù)預(yù)處理、模型訓(xùn)練、模型保存和模型預(yù)測(cè)等環(huán)節(jié)。 實(shí)驗(yàn)摘要 實(shí)驗(yàn)準(zhǔn)備:登錄華為云賬號(hào) 1. OBS 準(zhǔn)備 2.ModelArts應(yīng)用來(lái)自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科支持多種自動(dòng)學(xué)習(xí)能力,通過(guò)“自動(dòng)學(xué)習(xí)”訓(xùn)練模型,用戶不需編寫代碼即可完成自動(dòng)建模、一鍵部署。 AI市場(chǎng) 預(yù)置常用算法和常用數(shù)據(jù)集,支持模型在企業(yè)內(nèi)部共享或者公開(kāi)共享。 AI開(kāi)發(fā)平臺(tái)ModelArts ModelArts是面向開(kāi)發(fā)者的一站式AI開(kāi)發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、來(lái)自:百科ModelArts訓(xùn)練管理服務(wù)完成一次訓(xùn)練任務(wù)。 故障識(shí)別與根因定位服務(wù)實(shí)操 該實(shí)驗(yàn)旨在指導(dǎo)用戶短時(shí)間內(nèi)熟悉并掌握故障識(shí)別與根因定位服務(wù)使用方式。 使用昇騰 彈性云服務(wù)器 實(shí)現(xiàn)黑白圖像上色應(yīng)用(C++) 本實(shí)驗(yàn)主要介紹基于AI1型服務(wù)器的黑白圖像上色項(xiàng)目,并部署在AI1型服務(wù)器上執(zhí)行的方法。來(lái)自:專題
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:遷移學(xué)習(xí)與預(yù)訓(xùn)練模型
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- MCP 與深度學(xué)習(xí):加速模型訓(xùn)練的創(chuàng)新方法
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:分布式訓(xùn)練與模型并行化
- 《深度學(xué)習(xí)之TensorFlow入門、原理與進(jìn)階實(shí)戰(zhàn)》—3.1.3 迭代訓(xùn)練模型
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:自監(jiān)督學(xué)習(xí)與對(duì)抗性訓(xùn)練
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型的分布式訓(xùn)練
- 數(shù)學(xué)建模學(xué)習(xí)(68):機(jī)器學(xué)習(xí)訓(xùn)練模型的保存與模型使用
- 深度解析與學(xué)習(xí)應(yīng)用-模型樹(shù)
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:模型安全與防御