- 基于深度學(xué)習(xí)的教學(xué)變革 內(nèi)容精選 換一換
-
云知識(shí) 基于深度學(xué)習(xí)算法的 語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科征形成更抽象的高層代表屬性類(lèi)別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺(jué)、語(yǔ)音識(shí)別、自然語(yǔ)言處理等其他領(lǐng)域。來(lái)自:百科
- 基于深度學(xué)習(xí)的教學(xué)變革 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類(lèi)型以及深度學(xué)習(xí)工程中常見(jiàn)的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科本課程介紹了雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例,讓你對(duì)雙向深度學(xué)習(xí)有初步的認(rèn)知。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、認(rèn)識(shí)雙向智能。 2、了解深度雙向智能的理論、算法和應(yīng)用示例。 課程大綱 第1章 引言 第2章 雙向智能 第3章 深度雙向智能 華為云 面向未來(lái)的智能世界,數(shù)字化來(lái)自:百科
- 基于深度學(xué)習(xí)的教學(xué)變革 更多內(nèi)容
-
更好的訓(xùn)練效果。 本次訓(xùn)練所使用的經(jīng)過(guò)數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類(lèi)等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過(guò)人工神經(jīng)網(wǎng)絡(luò)來(lái)提取特征,不同層的輸出常被視為神經(jīng)網(wǎng)絡(luò)提取出的不同尺度的特征,上一層的輸出來(lái)自:百科
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣(mài)機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科
、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科
3、新工科背景下的計(jì)算機(jī)體系結(jié)構(gòu)課程群(鯤鵬)教學(xué)改革。 聽(tīng)眾收益: 了解新形勢(shì)下如何改革教學(xué)內(nèi)容,聚焦算力,強(qiáng)化計(jì)算思維,提升系統(tǒng)認(rèn)知,適應(yīng)端-邊-云協(xié)同的信息技術(shù)生態(tài)環(huán)境,創(chuàng)建面向產(chǎn)業(yè)需求的人才培養(yǎng)范式。 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云來(lái)自:百科
分支與云之間互聯(lián)的能力。該方案支持即插即用和自動(dòng)化業(yè)務(wù)編排,簡(jiǎn)化網(wǎng)絡(luò)部署;支持靈活的網(wǎng)絡(luò)互聯(lián),應(yīng)對(duì)企業(yè)各種行業(yè)場(chǎng)景;支持基于應(yīng)用的智能選路和廣域網(wǎng)優(yōu)化,保證關(guān)鍵應(yīng)用的優(yōu)質(zhì)體驗(yàn)。 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。來(lái)自:百科
點(diǎn)和擴(kuò)大規(guī)模的可能,最終將導(dǎo)致各行業(yè)的融合與協(xié)同演化,為企業(yè)帶來(lái)新機(jī)遇。 ● 驅(qū)動(dòng)價(jià)值網(wǎng)絡(luò)再造:數(shù)據(jù)的識(shí)別、利用可以加快數(shù)據(jù)分享。分享越多,數(shù)據(jù)的價(jià)值密度越高,越能帶動(dòng)企業(yè)的核心競(jìng)爭(zhēng)力的提高。數(shù)據(jù)的規(guī)模性、多樣性、實(shí)時(shí)性、價(jià)值性以及全新處理模式,可以幫助企業(yè)具有更強(qiáng)的決策力、洞察力,形成可循環(huán)持續(xù)的價(jià)值再造模式。來(lái)自:云商店
360度用戶畫(huà)像:對(duì)學(xué)生學(xué)習(xí)進(jìn)行全流程跟蹤和能力刻畫(huà)。 智慧教學(xué)云平臺(tái)的特點(diǎn): l基于成果導(dǎo)向的教育理念 l企業(yè)級(jí)真實(shí)項(xiàng)目案例 l行業(yè)前沿課程體系 l領(lǐng)先行業(yè)的軟件工程標(biāo)準(zhǔn) l以大數(shù)據(jù)為支撐的智慧教學(xué)平臺(tái) l云上與本地結(jié)合的開(kāi)放實(shí)驗(yàn)系統(tǒng) l實(shí)訓(xùn)內(nèi)容與實(shí)訓(xùn)環(huán)境同步供應(yīng) l線上線下結(jié)合的服務(wù)體系 云市場(chǎng)商品來(lái)自:云商店
- 基于深度學(xué)習(xí)的AI
- 基于深度學(xué)習(xí)的解決思路
- 基于深度學(xué)習(xí)的標(biāo)簽分布學(xué)習(xí)介紹
- 基于深度學(xué)習(xí)的場(chǎng)景文字檢索
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.2.2 基于統(tǒng)計(jì)的深度學(xué)習(xí)技術(shù)
- 基于深度學(xué)習(xí)的小目標(biāo)檢測(cè)
- 探索基于深度學(xué)習(xí)的測(cè)井解釋技術(shù)
- 基于深度學(xué)習(xí)的石油煉化過(guò)程優(yōu)化
- 基于深度學(xué)習(xí)的日志數(shù)據(jù)異常檢測(cè)
- 基于TensorFlow的深度學(xué)習(xí)模型優(yōu)化策略