- 深度學(xué)習(xí)的課堂變革 內(nèi)容精選 換一換
-
征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來解釋說明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺、 語音識別 、自然語言處理等其他領(lǐng)域。來自:百科華為云計(jì)算 云知識 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識,其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科
- 深度學(xué)習(xí)的課堂變革 相關(guān)內(nèi)容
-
了能耗高效的深度學(xué)習(xí)。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員了解如下知識: 1、高效的結(jié)構(gòu)設(shè)計(jì)。 2、用NAS搜索輕量級網(wǎng)絡(luò)。 3、數(shù)據(jù)高效的模型壓縮。 4、1bit量化。 課程大綱 第1章 能耗高效的深度學(xué)習(xí)的背景 第2章 高效的神經(jīng)元和結(jié)構(gòu)設(shè)計(jì) 第3章 基于NAS的輕量級神經(jīng)網(wǎng)絡(luò)來自:百科華為云計(jì)算 云知識 基于深度學(xué)習(xí)算法的語音識別 基于深度學(xué)習(xí)算法的語音識別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語音數(shù)據(jù)集THCHS30進(jìn)行語音識別的實(shí)戰(zhàn)演練,讓使用者在了解語音識別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來自:百科
- 深度學(xué)習(xí)的課堂變革 更多內(nèi)容
-
華為云計(jì)算 云知識 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺來自:百科
分支與云之間互聯(lián)的能力。該方案支持即插即用和自動(dòng)化業(yè)務(wù)編排,簡化網(wǎng)絡(luò)部署;支持靈活的網(wǎng)絡(luò)互聯(lián),應(yīng)對企業(yè)各種行業(yè)場景;支持基于應(yīng)用的智能選路和廣域網(wǎng)優(yōu)化,保證關(guān)鍵應(yīng)用的優(yōu)質(zhì)體驗(yàn)。 華為云 面向未來的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。來自:百科
點(diǎn)和擴(kuò)大規(guī)模的可能,最終將導(dǎo)致各行業(yè)的融合與協(xié)同演化,為企業(yè)帶來新機(jī)遇。 ● 驅(qū)動(dòng)價(jià)值網(wǎng)絡(luò)再造:數(shù)據(jù)的識別、利用可以加快數(shù)據(jù)分享。分享越多,數(shù)據(jù)的價(jià)值密度越高,越能帶動(dòng)企業(yè)的核心競爭力的提高。數(shù)據(jù)的規(guī)模性、多樣性、實(shí)時(shí)性、價(jià)值性以及全新處理模式,可以幫助企業(yè)具有更強(qiáng)的決策力、洞察力,形成可循環(huán)持續(xù)的價(jià)值再造模式。來自:云商店
教師點(diǎn)擊頁面上云課堂的【添加】圖標(biāo),進(jìn)入到云課堂新建頁面,選擇當(dāng)前的課堂類型為【標(biāo)準(zhǔn)課堂】,選擇要篩選的課程方向,為當(dāng)前課堂選擇要授課的課程(只能使用自己的專業(yè)課),推送學(xué)習(xí)的班級,選擇在課堂發(fā)布時(shí)是否自動(dòng)添加學(xué)生。 注意: 選擇課堂方向以后,系統(tǒng)會(huì)搜索當(dāng)前方向教師創(chuàng)建的可用的專業(yè)課。 專業(yè)課程是可以包含作業(yè)、考試、實(shí)驗(yàn)的專業(yè)授課課程。來自:云商店
角色: IAM 最初提供的一種根據(jù)用戶的工作職能定義權(quán)限的粗粒度授權(quán)機(jī)制。該機(jī)制以服務(wù)為粒度,提供有限的服務(wù)相關(guān)角色用于授權(quán) IAM最新提供的一種細(xì)粒度授權(quán)的能力,可以精確到具體服務(wù)的操作、資源以及請求條件等?;诓呗?span style='color:#C7000B'>的授權(quán)是一種更加靈活的授權(quán)方式,能夠滿足企業(yè)對權(quán)限最小化的安全管控要求。來自:專題
- 華為云在線課堂AI技術(shù)領(lǐng)域課程“深度學(xué)習(xí)”學(xué)習(xí)心得體會(huì)
- 深度學(xué)習(xí)的學(xué)習(xí)路線
- 《打破壁壘:DataWorks ETL與AI算法的深度融合變革》
- 《解鎖元宇宙虛擬角色自主行為:AI與深度強(qiáng)化學(xué)習(xí)的融合變革》
- 華為云在線課堂AI技術(shù)領(lǐng)域課程“深度學(xué)習(xí)”學(xué)習(xí)心得體會(huì)---第二周
- 【深度學(xué)習(xí)】嘿馬深度學(xué)習(xí)筆記第1篇:深度學(xué)習(xí),1.1 深度學(xué)習(xí)與機(jī)器學(xué)習(xí)的區(qū)別【附代碼文檔】
- 華為云在線課堂AI技術(shù)領(lǐng)域課程“深度學(xué)習(xí)”學(xué)習(xí)心得體會(huì)---第四周
- 動(dòng)手學(xué)深度學(xué)習(xí):優(yōu)化與深度學(xué)習(xí)的關(guān)系
- 華為云在線課堂AI技術(shù)領(lǐng)域課程“深度學(xué)習(xí)”學(xué)習(xí)心得體會(huì)---第三周
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.1.3 深度學(xué)習(xí)