- 從理解走向深度學(xué)習(xí) 內(nèi)容精選 換一換
-
來自:百科華為云計(jì)算 云知識 深度學(xué)習(xí) 深度學(xué)習(xí) 時間:2020-11-23 16:30:56 深度學(xué)習(xí)( Deep Learning,DL)是機(jī)器學(xué)習(xí)的一種,機(jī)器學(xué)習(xí)是實(shí)現(xiàn)人工智能的必由之路。深度學(xué)習(xí)的概念源于人工神經(jīng)網(wǎng)絡(luò)的研究,包含多個隱藏層的多層感知器就是深度學(xué)習(xí)結(jié)構(gòu)。深度學(xué)習(xí)通過組合低層特來自:百科
- 從理解走向深度學(xué)習(xí) 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識,其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時間:2020-12-09 14:52:19 以當(dāng)今研究趨勢由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來自:百科
- 從理解走向深度學(xué)習(xí) 更多內(nèi)容
-
華為云計(jì)算 云知識 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時間:2020-12-08 10:34:34 本課程旨基于自動售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺 搭建到來自:百科華為云計(jì)算 云知識 政務(wù)辦理解決方案直播 政務(wù)辦理解決方案直播 時間:2020-12-26 10:43:39 視頻直播 如何讓政務(wù)服務(wù)更有溫度? 如何基層工作人員減負(fù)增效? 如何讓城市治理高效協(xié)同? 過去,公眾辦理一件事多頭跑,流程多,效率低,進(jìn)度慢,堵點(diǎn)問題根本問題難以分析,數(shù)來自:云商店創(chuàng)新可信。 GaussDB 是唯一經(jīng)過最嚴(yán)苛業(yè)務(wù)連續(xù)性考驗(yàn)實(shí)踐證明自身可信的產(chǎn)品。未來,GaussDB將從大行走向更多的中小金融機(jī)構(gòu),從核心業(yè)務(wù)走向更多的一般業(yè)務(wù)。以及從金融走向政務(wù)、能源、交通、電信等關(guān)鍵信息基礎(chǔ)設(shè)施行業(yè),如何實(shí)現(xiàn)平滑替換,更低成本、更快速地使用全場景數(shù)據(jù)庫,是實(shí)現(xiàn)技術(shù)普惠的關(guān)鍵要素。來自:百科EdgeFabric)是基于云原生技術(shù)構(gòu)建的邊云協(xié)同操作系統(tǒng),可運(yùn)行在多種邊緣設(shè)備上,將豐富的AI、IoT及數(shù)據(jù)分析等智能應(yīng)用以輕量化的方式從云端部署到邊緣,滿足用戶對智能應(yīng)用邊云協(xié)同的業(yè)務(wù)訴求 立即使用智能邊緣市場1對1咨詢 [ 免費(fèi)體驗(yàn)中心 ]免費(fèi)領(lǐng)取體驗(yàn)產(chǎn)品,快速開啟云上之旅免費(fèi)來自:百科需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類 3. 機(jī)器學(xué)習(xí)的整體流程來自:百科
- 從純粹走向自由
- 深度學(xué)習(xí)修煉(一)——從機(jī)器學(xué)習(xí)轉(zhuǎn)向深度學(xué)習(xí)
- 從課堂走向?qū)嵺`還有多遠(yuǎn)?
- 深度學(xué)習(xí) --- 深入理解RNN結(jié)構(gòu)
- 深度學(xué)習(xí)之快速理解卷積層
- 一文理解什么是深度學(xué)習(xí)?
- 最適合中國開發(fā)者的深度學(xué)習(xí)框架:走向成熟的 PaddlePaddle 1.0
- 對深度學(xué)習(xí)概念的基礎(chǔ)理解與認(rèn)識
- 深度學(xué)習(xí)算法:從基礎(chǔ)到實(shí)踐
- 深度學(xué)習(xí)之從Python到C++