- tensorflow深度學(xué)習(xí)算法原理 內(nèi)容精選 換一換
-
本課程將會講解Python在數(shù)據(jù)分析、AI和圖像處理等領(lǐng)域常用的工具包。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、掌握強(qiáng)數(shù)據(jù)分析工具pandas、numpy的使用。 2、掌握圖像處理工具pillow和scikit-image的使用。 3、掌握強(qiáng)機(jī)器學(xué)習(xí)工具scikit-learn的使用。 4、掌握深度學(xué)習(xí)框架來自:百科
- tensorflow深度學(xué)習(xí)算法原理 相關(guān)內(nèi)容
-
GPU卡,每臺云服務(wù)器支持最大8張Tesla V100顯卡。 支持NVIDIA CUDA 并行計(jì)算,支持常見的深度學(xué)習(xí)框架Tensorflow、Caffe、PyTorch、MXNet等。 單實(shí)例最大網(wǎng)絡(luò)帶寬30Gb/s。 完整的基礎(chǔ)能力:網(wǎng)絡(luò)自定義,自由劃分子網(wǎng)、設(shè)置網(wǎng)絡(luò)訪問策略;海量來自:百科支持NVIDIA CUDA 并行計(jì)算,支持常見的深度學(xué)習(xí)框架Tensorflow、Caffe、PyTorch、MXNet等。 單精度能力15.7 TFLOPS,雙精度能力7.8 TFLOPS。 支持NVIDIA Tensor Core能力,深度學(xué)習(xí)混合精度運(yùn)算能力達(dá)到125 TFLOPS。來自:百科
- tensorflow深度學(xué)習(xí)算法原理 更多內(nèi)容
-
GPU內(nèi)置硬件視頻編解碼引擎,能夠同時(shí)進(jìn)行35路高清視頻解碼與實(shí)時(shí)推理 常規(guī)支持軟件列表 Pi1實(shí)例主要用于GPU推理計(jì)算場景,例如圖片識別、 語音識別 等場景。 常用的軟件支持列表如下: Tensorflow、Caffe、PyTorch、MXNet等深度學(xué)習(xí)框架 推理加速型Pi2來自:百科GaussDB 原理 GaussDB原理 GaussDB數(shù)據(jù)庫 ,又稱為 云數(shù)據(jù)庫 GaussDB,該產(chǎn)品擁有云上高可用,高可靠,高安全,彈性伸縮,一鍵部署,快速備份恢復(fù),監(jiān)控告警等關(guān)鍵能力,智能診斷,索引推薦等豐富的企業(yè)級特性,有效提升客戶開發(fā)運(yùn)維效率。 GaussDB數(shù)據(jù)庫,又稱為云來自:專題算能力,可以使用P1型云服務(wù)器。常用的軟件支持列表如下: Tensorflow、Caffe、PyTorch、MXNet等深度學(xué)習(xí)框架 RedShift for Autodesk 3dsMax、V-Ray for 3ds Max Agisoft PhotoScan MapD 彈性云服務(wù)器來自:百科waf工作和防護(hù)原理 waf工作和防護(hù)原理 時(shí)間:2020-07-16 09:34:50 WAF 華為云 Web應(yīng)用防火墻 WAF對網(wǎng)站業(yè)務(wù)流量進(jìn)行多維度檢測和防護(hù),結(jié)合深度機(jī)器學(xué)習(xí)智能識別惡意請求特征和防御未知威脅,全面避免網(wǎng)站被黑客惡意攻擊和入侵。采用規(guī)則和AI雙引擎架構(gòu),默認(rèn)集成來自:百科AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--機(jī)器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò) 應(yīng)用場景 應(yīng)用場景來自:專題華為云計(jì)算 云知識 Hive基本原理 Hive基本原理 時(shí)間:2020-09-23 15:57:46 Hive是建立在Hadoop上的 數(shù)據(jù)倉庫 基礎(chǔ)構(gòu)架。它提供了一系列的工具,可以用來進(jìn)行數(shù)據(jù)提取轉(zhuǎn)化加載(ETL),這是一種可以存儲、查詢和分析存儲在Hadoop中的大規(guī)模數(shù)據(jù)的機(jī)制來自:百科功能,均可以通過web界面由用戶自助進(jìn)行操作。 支持VPC 支持通過VPC內(nèi)的私有網(wǎng)絡(luò),與E CS 之間內(nèi)網(wǎng)互通; 易用性 支持TensorFlow、Caffe等流行框架 支持k8s/Swarm,使用戶能夠非常簡便的搭建、管理計(jì)算集群。 未來支持主流框架鏡像、集群自動(dòng)化發(fā)放 存儲 支來自:百科
- 《深度學(xué)習(xí)之TensorFlow入門、原理與進(jìn)階實(shí)戰(zhàn)》— 3 TensorFlow基本開發(fā)步驟
- 《深度學(xué)習(xí)之TensorFlow入門、原理與進(jìn)階實(shí)戰(zhàn)》—1.3 TensorFlow的特點(diǎn)
- 《深度學(xué)習(xí)之TensorFlow入門、原理與進(jìn)階實(shí)戰(zhàn)》—1.5.2 如何學(xué)習(xí)本書
- 《深度學(xué)習(xí)之TensorFlow入門、原理與進(jìn)階實(shí)戰(zhàn)》—1.2 TensorFlow是做什么的
- 《深度學(xué)習(xí)之TensorFlow入門、原理與進(jìn)階實(shí)戰(zhàn)》—3.3 了解TensorFlow開發(fā)的基本步驟
- 《深度學(xué)習(xí)之TensorFlow入門、原理與進(jìn)階實(shí)戰(zhàn)》—3.3.10 測試模型
- 《深度學(xué)習(xí)之TensorFlow入門、原理與進(jìn)階實(shí)戰(zhàn)》—3.3.11 使用模型
- 《深度學(xué)習(xí)之TensorFlow入門、原理與進(jìn)階實(shí)戰(zhàn)》—3.3.6 定義“運(yùn)算”
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.2.4 TensorFlow
- 《深度學(xué)習(xí)之TensorFlow入門、原理與進(jìn)階實(shí)戰(zhàn)》—1.4 其他深度學(xué)習(xí)框架特點(diǎn)及介紹