- 使用Tensorflow訓(xùn)練神經(jīng)網(wǎng)絡(luò) 內(nèi)容精選 換一換
-
本課程將會(huì)探討深度學(xué)習(xí)中的基礎(chǔ)理論、算法、使用方法、技巧與不同的深度學(xué)習(xí)模型。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、掌握神經(jīng)網(wǎng)絡(luò)基礎(chǔ)理論。 2、掌握深度學(xué)習(xí)中數(shù)據(jù)處理的基本方法。 3、掌握深度學(xué)習(xí)訓(xùn)練中調(diào)參、模型選擇的基本方法。 4、掌握主流深度學(xué)習(xí)模型的技術(shù)特點(diǎn)。 課程大綱 第1章 神經(jīng)網(wǎng)絡(luò)基礎(chǔ)概念 第2章來(lái)自:百科面向不同經(jīng)驗(yàn)的AI開(kāi)發(fā)者,提供便捷易用的使用流程。例如,面向業(yè)務(wù)開(kāi)發(fā)者,不需關(guān)注模型或編碼,可使用自動(dòng)學(xué)習(xí)流程快速構(gòu)建AI應(yīng)用;面向AI初學(xué)者,不需關(guān)注模型開(kāi)發(fā),使用預(yù)置算法構(gòu)建AI應(yīng)用;面向AI工程師,提供多種開(kāi)發(fā)環(huán)境,多種操作流程和模式,方便開(kāi)發(fā)者編碼擴(kuò)展,快速構(gòu)建模型及應(yīng)用。來(lái)自:專題
- 使用Tensorflow訓(xùn)練神經(jīng)網(wǎng)絡(luò) 相關(guān)內(nèi)容
-
delArts支持Tensorflow、MXNet等主流開(kāi)源的AI開(kāi)發(fā)框架,也支持開(kāi)發(fā)者使用自研的算法框架,匹配您的使用習(xí)慣。 ModelArts的理念就是讓AI開(kāi)發(fā)變得更簡(jiǎn)單、更方便。 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行來(lái)自:百科ECC顯存,帶寬192GB/s GPU內(nèi)置硬件視頻編解碼引擎,能夠同時(shí)進(jìn)行35路高清視頻解碼與實(shí)時(shí)推理 常規(guī)支持軟件列表 Pi1實(shí)例主要用于GPU推理計(jì)算場(chǎng)景,例如圖片識(shí)別、 語(yǔ)音識(shí)別 等場(chǎng)景。 常用的軟件支持列表如下: Tensorflow、Caffe、PyTorch、MXNet等深度學(xué)習(xí)框架 推理加速型Pi2來(lái)自:百科
- 使用Tensorflow訓(xùn)練神經(jīng)網(wǎng)絡(luò) 更多內(nèi)容
-
1、一般情況下,通過(guò)深度學(xué)習(xí)框架中的標(biāo)準(zhǔn)算子實(shí)現(xiàn)的神經(jīng)網(wǎng)絡(luò)模型已經(jīng)通過(guò)GPU或者其它類型神經(jīng)網(wǎng)絡(luò)芯片做過(guò)訓(xùn)練。如果將這個(gè)神經(jīng)網(wǎng)絡(luò)模型繼續(xù)運(yùn)行在昇騰AI處理器上時(shí),希望盡量在不改變?cè)即a的前提下,在昇騰AI處理器上能發(fā)揮最大性能。因此TBE提供了一套完整的TBE算子加速庫(kù),庫(kù)中的算子功能與神經(jīng)網(wǎng)絡(luò)中的常見(jiàn)標(biāo)準(zhǔn)算子來(lái)自:百科
課程目標(biāo) 學(xué)完本課程后,您將能夠:描述神經(jīng)網(wǎng)絡(luò)的定義與發(fā)展;熟悉深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的重要“部件”;熟悉神經(jīng)網(wǎng)絡(luò)的訓(xùn)練與優(yōu)化;描述深度學(xué)習(xí)中常見(jiàn)的問(wèn)題。 課程大綱 1. 深度學(xué)習(xí)簡(jiǎn)介 2. 訓(xùn)練法則 3. 激活函數(shù) 4. 正則化 5. 優(yōu)化器 6. 神經(jīng)網(wǎng)絡(luò)類型 7. 常見(jiàn)問(wèn)題 華為云 面來(lái)自:百科
華為云計(jì)算 云知識(shí) 實(shí)戰(zhàn)篇:神經(jīng)網(wǎng)絡(luò)賦予機(jī)器識(shí)圖的能力 實(shí)戰(zhàn)篇:神經(jīng)網(wǎng)絡(luò)賦予機(jī)器識(shí)圖的能力 時(shí)間:2020-12-09 09:28:38 深度神經(jīng)網(wǎng)絡(luò)讓機(jī)器擁有了視覺(jué)的能力,實(shí)戰(zhàn)派帶你探索深度學(xué)習(xí)! 課程簡(jiǎn)介 本課程主要內(nèi)容包括:深度學(xué)習(xí)平臺(tái)介紹、神經(jīng)網(wǎng)絡(luò)構(gòu)建多分類模型、經(jīng)典入門(mén)示例詳解:構(gòu)建手寫(xiě)數(shù)字識(shí)別模型。來(lái)自:百科
大V講堂——開(kāi)放環(huán)境下的自適應(yīng)視覺(jué)感知 時(shí)間:2020-12-16 16:01:11 現(xiàn)有機(jī)器視覺(jué)學(xué)習(xí)技術(shù)通常依賴于大規(guī)模精確標(biāo)注的訓(xùn)練數(shù)據(jù)。在典型實(shí)驗(yàn)室環(huán)境下設(shè)計(jì)和訓(xùn)練的人工智能模型,在行業(yè)應(yīng)用場(chǎng)景變換時(shí),容易導(dǎo)致系統(tǒng)性能急劇下降。本課程將從弱監(jiān)督視覺(jué)理解的角度,介紹在降低模型對(duì)特定應(yīng)用場(chǎng)景數(shù)據(jù)依賴方面所開(kāi)展的一些研究工作。來(lái)自:百科
提供統(tǒng)一技能開(kāi)發(fā)框架,封裝基礎(chǔ)組件,簡(jiǎn)化開(kāi)發(fā)流程,提供統(tǒng)一的API接口,支持多種開(kāi)發(fā)框架(如Caffe、TensorFlow等)。 提供模型訓(xùn)練、開(kāi)發(fā)、調(diào)試、部署、管理一站式服務(wù),無(wú)縫對(duì)接用戶設(shè)備。 在云側(cè)模型管理中導(dǎo)入ModelArts訓(xùn)練出的模型,也可導(dǎo)入用戶線下開(kāi)發(fā)的自定義模型。 技能開(kāi)發(fā)完成后可發(fā)布到技能市場(chǎng)或直接部署到端側(cè)設(shè)備。來(lái)自:百科
上云 AI基礎(chǔ) AI基礎(chǔ)課程--概覽 AI基礎(chǔ)課程--Python編程知識(shí) AI基礎(chǔ)課程--數(shù)學(xué)基礎(chǔ)知識(shí) AI基礎(chǔ)課程--常用框架工具 技術(shù)領(lǐng)域 AI技術(shù)領(lǐng)域課程--機(jī)器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對(duì)抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò)來(lái)自:專題
開(kāi)發(fā)/訓(xùn)練、模型評(píng)估、應(yīng)用開(kāi)發(fā)、應(yīng)用評(píng)估等步驟。 開(kāi)發(fā)環(huán)境Notebook 在AI開(kāi)發(fā)階段,ModelArts也致力于提升AI開(kāi)發(fā)體驗(yàn),降低開(kāi)發(fā)門(mén)檻。ModelArts開(kāi)發(fā)環(huán)境,以云原生的資源使用和開(kāi)發(fā)工具鏈的集成,目標(biāo)為不同類型AI開(kāi)發(fā)、探索、教學(xué)用戶,提供更好云化AI開(kāi)發(fā)體驗(yàn)來(lái)自:專題
單點(diǎn)抓拍、攝像頭獨(dú)立抓拍、電瓶車檢測(cè)、抓拍檢測(cè)電梯內(nèi)的電瓶車; 產(chǎn)品特點(diǎn): 本算法使用了深度神經(jīng)網(wǎng)絡(luò)技術(shù),通過(guò)使用大量實(shí)際場(chǎng)景圖片訓(xùn)練得到的模型,實(shí)現(xiàn)對(duì)電瓶車的檢測(cè),具有速度快、準(zhǔn)確率高的特點(diǎn)。算法特別優(yōu)化了俯視視角下的目標(biāo)檢測(cè),更適合電梯內(nèi)的使用場(chǎng)景。標(biāo)準(zhǔn)測(cè)試場(chǎng)景下檢測(cè)率超過(guò)90%,錯(cuò)誤率小于5%。 服務(wù)商簡(jiǎn)介來(lái)自:云商店
- PyTorch 深度學(xué)習(xí)實(shí)戰(zhàn) |用 TensorFlow 訓(xùn)練神經(jīng)網(wǎng)絡(luò)
- 使用tensorflow版本deepfm預(yù)置算法進(jìn)行訓(xùn)練
- 使用 TensorFlow 訓(xùn)練一個(gè)簡(jiǎn)單線性模型
- TensorFlow模型訓(xùn)練常見(jiàn)案例
- tensorflow學(xué)習(xí):準(zhǔn)備訓(xùn)練數(shù)據(jù)和構(gòu)建訓(xùn)練模型
- 神經(jīng)網(wǎng)絡(luò)訓(xùn)練技巧
- 使用卷積神經(jīng)網(wǎng)絡(luò)識(shí)別手寫(xiě)數(shù)字圖片——tensorflow部署
- tensorflow神經(jīng)網(wǎng)絡(luò)線性回歸
- tensorflow2實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)
- 《TensorFlow自然語(yǔ)言處理》—3.4.2 使用神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)詞嵌入