- ai芯 軟件算法 訓(xùn)練模型 內(nèi)容精選 換一換
-
特點(diǎn):構(gòu)建專有的自然語(yǔ)言處理分類模型,將大量的政務(wù)詢問(wèn)分發(fā)到對(duì)應(yīng)的部門,顯著提高工作效率。 優(yōu)勢(shì):針對(duì)場(chǎng)景領(lǐng)域提供預(yù)訓(xùn)練模型,效果遠(yuǎn)好于通用自然語(yǔ)言處理模型??筛鶕?jù)使用過(guò)程中的反饋持續(xù)優(yōu)化模型。 商品識(shí)別 特點(diǎn):構(gòu)建商品視覺(jué)自動(dòng)識(shí)別的模型,可用于無(wú)人超市等場(chǎng)景。 優(yōu)勢(shì):用戶自定義模型可以實(shí)現(xiàn)99.來(lái)自:百科寫數(shù)字識(shí)別也成為計(jì)算機(jī)視覺(jué)領(lǐng)域衡量算法表現(xiàn)的一個(gè)基準(zhǔn)任務(wù)。所以,通過(guò)這一實(shí)踐場(chǎng)景來(lái)了解神經(jīng)網(wǎng)絡(luò)開(kāi)發(fā)和訓(xùn)練,可謂再好不過(guò)了。如何使用深度學(xué)習(xí)框架MindSpore進(jìn)行模型開(kāi)發(fā)與訓(xùn)練?又如何在ModelArts平臺(tái)訓(xùn)練一個(gè)可以用于識(shí)別手寫數(shù)字的模型呢?讓我們來(lái)一探究竟吧。 數(shù)據(jù)集的選擇與準(zhǔn)備來(lái)自:百科
- ai芯 軟件算法 訓(xùn)練模型 相關(guān)內(nèi)容
-
HiLens平臺(tái)提供AI應(yīng)用開(kāi)發(fā)在推理階段的工具、插件,開(kāi)發(fā)者可以選擇用其完成開(kāi)發(fā)調(diào)試,最后通過(guò)HiLens平臺(tái)部署到設(shè)備上運(yùn)行和管理。 開(kāi)發(fā)流程 數(shù)據(jù)預(yù)處理和模型訓(xùn)練 用戶在華為云ModelArts平臺(tái)或線下,進(jìn)行數(shù)據(jù)預(yù)處理、算法開(kāi)發(fā)和模型訓(xùn)練,得到模型后,根據(jù)需要部署的設(shè)備芯片類型,完成對(duì)應(yīng)的模型轉(zhuǎn)換。來(lái)自:專題來(lái)自:百科
- ai芯 軟件算法 訓(xùn)練模型 更多內(nèi)容
-
通過(guò)全域感知服務(wù),原來(lái)需要人工巡檢的發(fā)現(xiàn)的問(wèn)題,現(xiàn)在都可以用AI感知來(lái)替代,而且準(zhǔn)確性還能提升。城市治理中的事項(xiàng)類別非常多,但很多事件的數(shù)據(jù)量很少,用常規(guī)的方式訓(xùn)練模型一個(gè)算法耗時(shí)長(zhǎng),準(zhǔn)確率低。我們依托于預(yù)訓(xùn)練大模型、小樣本學(xué)習(xí)等技術(shù),可以對(duì)這種數(shù)據(jù)量小的城市問(wèn)題進(jìn)行模型訓(xùn)練學(xué)習(xí)。同時(shí)通過(guò)圖來(lái)自:百科
華為云計(jì)算 云知識(shí) 邏輯模型和物理模型的對(duì)比 邏輯模型和物理模型的對(duì)比 時(shí)間:2021-06-02 14:37:26 數(shù)據(jù)庫(kù) 邏輯模型與物理模型的對(duì)比如下: 名稱定義:邏輯模型取名按照業(yè)務(wù)規(guī)則和現(xiàn)實(shí)世界對(duì)象的命名規(guī)范來(lái)取名;物理模型需要考慮到數(shù)據(jù)庫(kù)產(chǎn)品限制,比如不能出現(xiàn)非法字符,不能使用數(shù)據(jù)庫(kù)關(guān)鍵詞,不能超長(zhǎng)等約束;來(lái)自:百科
開(kāi)發(fā)者的“痛”,你遇到過(guò)么? 很多AI開(kāi)發(fā)者開(kāi)發(fā)者在訓(xùn)練得到AI模型之后,必須得在設(shè)備上實(shí)現(xiàn)模型的推理才能獲得相應(yīng)的AI能力,但目前AI模型不能直接在設(shè)備上運(yùn)行起來(lái)。這就意味著,開(kāi)發(fā)者還得有一套對(duì)應(yīng)的推理框架才能真正實(shí)現(xiàn)AI與IoT設(shè)備的結(jié)合。 另外,目前深度學(xué)習(xí)雖然可以在很多領(lǐng)域超越傳統(tǒng)算法,不過(guò)真正用來(lái)自:百科
云知識(shí) 漂浮物識(shí)別算法 漂浮物識(shí)別算法 時(shí)間:2021-01-07 10:46:15 視頻監(jiān)控 視頻檢測(cè) 華為云好望商城漂浮物識(shí)別算法,是基于深度學(xué)習(xí)的計(jì)算機(jī)智能視頻物體檢測(cè)算法,且通過(guò)規(guī)?;钠∥飻?shù)據(jù)(塑料泡沫,垃圾袋,河道漂浮植被)檢測(cè)訓(xùn)練,賦予監(jiān)測(cè)系統(tǒng)智能檢測(cè)能力,從而準(zhǔn)確判斷檢測(cè)場(chǎng)景內(nèi)的是否有漂浮物類型目標(biāo)來(lái)自:云商店
課程將介紹深度學(xué)習(xí)算法的知識(shí)。 課程簡(jiǎn)介 本課程將會(huì)探討深度學(xué)習(xí)中的基礎(chǔ)理論、算法、使用方法、技巧與不同的深度學(xué)習(xí)模型。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、掌握神經(jīng)網(wǎng)絡(luò)基礎(chǔ)理論。 2、掌握深度學(xué)習(xí)中數(shù)據(jù)處理的基本方法。 3、掌握深度學(xué)習(xí)訓(xùn)練中調(diào)參、模型選擇的基本方法。 4、掌握主流深度學(xué)習(xí)模型的技術(shù)特點(diǎn)。來(lái)自:百科
現(xiàn)有機(jī)器視覺(jué)學(xué)習(xí)技術(shù)通常依賴于大規(guī)模精確標(biāo)注的訓(xùn)練數(shù)據(jù)。在典型實(shí)驗(yàn)室環(huán)境下設(shè)計(jì)和訓(xùn)練的人工智能模型,在行業(yè)應(yīng)用場(chǎng)景變換時(shí),容易導(dǎo)致系統(tǒng)性能急劇下降。本課程將從弱監(jiān)督視覺(jué)理解的角度,介紹在降低模型對(duì)特定應(yīng)用場(chǎng)景數(shù)據(jù)依賴方面所開(kāi)展的一些研究工作。 課程簡(jiǎn)介 本課程介紹了在降低模型對(duì)特定應(yīng)用場(chǎng)景數(shù)據(jù)依賴方面所開(kāi)展的一些研究工作。來(lái)自:百科
免費(fèi)體驗(yàn) :一鍵完成商超商品識(shí)別模型部署 AI初學(xué)者:使用訂閱算法構(gòu)建模型實(shí)現(xiàn)花卉識(shí)別 推理部署最佳實(shí)踐 使用自定義鏡像創(chuàng)建AI應(yīng)用 推理服務(wù)訪問(wèn)公網(wǎng) 推理服務(wù)端到端運(yùn)維 查看更多 收起 ModelArts相關(guān)精選推薦 ModelArts推理部署_AI應(yīng)用_部署服務(wù)-華為云 Mod來(lái)自:專題
- 練習(xí)使用AI Gallery的預(yù)置算法訓(xùn)練模型
- 遷移學(xué)習(xí)算法中預(yù)訓(xùn)練模型(Pre-trained Models)
- 從軟件開(kāi)發(fā)到 AI 領(lǐng)域工程師:模型訓(xùn)練篇
- mindspore模型訓(xùn)練—混合精度算法
- AI模型的訓(xùn)練過(guò)程步驟
- 網(wǎng)絡(luò)場(chǎng)景AI模型訓(xùn)練效率實(shí)踐
- ModelArts使用AI Gallery算法訓(xùn)練模型并發(fā)布為在線服務(wù)教程
- kaldi語(yǔ)音識(shí)別 chain模型的訓(xùn)練流程
- AI Earth——AI模型訓(xùn)練:如何正確的進(jìn)行樣本點(diǎn)標(biāo)注?
- 《解鎖數(shù)據(jù)版本“魔方”:DataWorks護(hù)航AI模型訓(xùn)練》