- 深度學(xué)習(xí)中的特征 內(nèi)容精選 換一換
-
征形成更抽象的高層代表屬性類(lèi)別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺(jué)、 語(yǔ)音識(shí)別 、自然語(yǔ)言處理等其他領(lǐng)域。來(lái)自:百科來(lái)自:百科
- 深度學(xué)習(xí)中的特征 相關(guān)內(nèi)容
-
本課程介紹了雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例,讓你對(duì)雙向深度學(xué)習(xí)有初步的認(rèn)知。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、認(rèn)識(shí)雙向智能。 2、了解深度雙向智能的理論、算法和應(yīng)用示例。 課程大綱 第1章 引言 第2章 雙向智能 第3章 深度雙向智能 華為云 面向未來(lái)的智能世界,數(shù)字化來(lái)自:百科的深度學(xué)習(xí)。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員了解如下知識(shí): 1、高效的結(jié)構(gòu)設(shè)計(jì)。 2、用NAS搜索輕量級(jí)網(wǎng)絡(luò)。 3、數(shù)據(jù)高效的模型壓縮。 4、1bit量化。 課程大綱 第1章 能耗高效的深度學(xué)習(xí)的背景 第2章 高效的神經(jīng)元和結(jié)構(gòu)設(shè)計(jì) 第3章 基于NAS的輕量級(jí)神經(jīng)網(wǎng)絡(luò) 第4章來(lái)自:百科
- 深度學(xué)習(xí)中的特征 更多內(nèi)容
-
云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科更好的訓(xùn)練效果。 本次訓(xùn)練所使用的經(jīng)過(guò)數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類(lèi)等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過(guò)人工神經(jīng)網(wǎng)絡(luò)來(lái)提取特征,不同層的輸出常被視為神經(jīng)網(wǎng)絡(luò)提取出的不同尺度的特征,上一層的輸出來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣(mài)機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科持久性(Durability):事務(wù)一旦提交,對(duì)數(shù)據(jù)庫(kù)中數(shù)據(jù)的改變是永久的。提交后的操作或者故障不會(huì)對(duì)事務(wù)的操作結(jié)果產(chǎn)生任何影響。 文中課程 更多精彩課堂、微認(rèn)證、沙箱實(shí)驗(yàn),盡在華為云學(xué)院 數(shù)據(jù)庫(kù)基礎(chǔ)知識(shí) 本課程主要介紹數(shù)據(jù)庫(kù)管理工作的主要內(nèi)容:備份方式、安全管理措施、什么是性能管理;數(shù)據(jù)庫(kù)的重要基本概念(實(shí)例、來(lái)自:百科華為云計(jì)算 云知識(shí) 使用ModelArts中開(kāi)發(fā)工具學(xué)習(xí)Python 使用ModelArts中開(kāi)發(fā)工具學(xué)習(xí)Python 時(shí)間:2020-12-01 10:31:05 本實(shí)驗(yàn)指導(dǎo)用戶(hù)基于Notebook對(duì)Python編程語(yǔ)言有一個(gè)基礎(chǔ)的認(rèn)知,掌握Python的基礎(chǔ)語(yǔ)法。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 通過(guò)本實(shí)驗(yàn),您將能夠:來(lái)自:百科華為云計(jì)算 云知識(shí) IAM中的項(xiàng)目 IAM中的項(xiàng)目 時(shí)間:2021-07-01 15:17:50 華為云的每個(gè)區(qū)域默認(rèn)對(duì)應(yīng)一個(gè)項(xiàng)目,這個(gè)項(xiàng)目由系統(tǒng)預(yù)置,用來(lái)隔離物理區(qū)域間的資源(計(jì)算資源、存儲(chǔ)資源和網(wǎng)絡(luò)資源),以區(qū)域默認(rèn)項(xiàng)目為單位進(jìn)行授權(quán),IAM用戶(hù)可以訪問(wèn)您賬號(hào)中該區(qū)域的所有資源。 如果來(lái)自:百科華為云計(jì)算 云知識(shí) DAS 中SQL的操作 DAS中SQL的操作 時(shí)間:2021-05-31 17:59:34 數(shù)據(jù)庫(kù) 打開(kāi)SQL操作,會(huì)有自動(dòng)化SQL輸入提示,協(xié)助完成SQL的編寫(xiě)。 步驟1 點(diǎn)擊上方的SQL窗口,或下方的SQL查詢(xún),打開(kāi)SQL操作界面; 步驟2 在SQL界面上,我們可以進(jìn)行SQL的操作,例如查詢(xún)等;來(lái)自:百科
- 《深度剖析:特征工程—機(jī)器學(xué)習(xí)的隱秘基石》
- 基于深度學(xué)習(xí)的油藏地質(zhì)特征提取方法
- 《深度剖析:特征工程—機(jī)器學(xué)習(xí)的隱秘基石》
- 語(yǔ)音情感識(shí)別之手工特征深度學(xué)習(xí)方法
- ASK-HAR:多尺度特征提取的深度學(xué)習(xí)模型
- 深度學(xué)習(xí)算法中的集成學(xué)習(xí)(Ensemble Learning)與深度學(xué)習(xí)的結(jié)合
- 深度學(xué)習(xí)算法中的深度強(qiáng)化學(xué)習(xí)(Deep Reinforcement Learning)
- 深度學(xué)習(xí)中的遷移學(xué)習(xí):應(yīng)用與實(shí)踐
- OpenCV中的深度學(xué)習(xí)姿態(tài)估計(jì)
- OpenCV中的深度學(xué)習(xí)車(chē)輛檢測(cè)