- 深度學(xué)習(xí)訓(xùn)練怎么暫停 內(nèi)容精選 換一換
-
來自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科
- 深度學(xué)習(xí)訓(xùn)練怎么暫停 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來自:百科來自:百科
- 深度學(xué)習(xí)訓(xùn)練怎么暫停 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過程。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來自:百科權(quán)完成操作。 創(chuàng)建訓(xùn)練作業(yè) 1、登錄ModelArts管理控制臺(tái)。 2、在左側(cè)導(dǎo)航欄中,選擇“訓(xùn)練管理 > 訓(xùn)練作業(yè)”,進(jìn)入“訓(xùn)練作業(yè)”列表。 3、單擊“創(chuàng)建訓(xùn)練作業(yè)”,進(jìn)入“創(chuàng)建訓(xùn)練作業(yè)”頁面,在該頁面填寫訓(xùn)練作業(yè)相關(guān)參數(shù)信息。 4、選擇訓(xùn)練資源的規(guī)格。訓(xùn)練參數(shù)的可選范圍與已有算法的使用約束保持一致。來自:專題登錄成功后,點(diǎn)擊網(wǎng)站上方學(xué)習(xí)中心,看到學(xué)習(xí)的課程。 學(xué)生查看學(xué)習(xí)的課程如下圖所示: 3 課程學(xué)習(xí) 3.1 課程內(nèi)容學(xué)習(xí) 點(diǎn)擊課程圖片,進(jìn)入課程主頁學(xué)習(xí) 章節(jié)導(dǎo)航中,可以看到課程安排需要學(xué)習(xí)的內(nèi)容,如下圖所示 課程內(nèi)容包含:視頻,文檔,網(wǎng)頁,附件,測(cè)驗(yàn)和作業(yè)。 點(diǎn)擊去學(xué)習(xí),可以學(xué)習(xí)該內(nèi)容,視頻學(xué)習(xí)如下圖所示來自:云商店云數(shù)據(jù)庫 GaussDB性能怎么調(diào) 云數(shù)據(jù)庫 GaussDB 性能怎么調(diào) 云數(shù)據(jù)庫GaussDB是華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)據(jù)庫。具備企業(yè)級(jí)復(fù)雜事務(wù)混合負(fù)載能力,同時(shí)支持分布式事務(wù),同城跨AZ部署,數(shù)據(jù)0丟失,支持1000+節(jié)點(diǎn)的擴(kuò)展能力,PB級(jí)海量存儲(chǔ)。 GaussDB數(shù)據(jù)庫 如何進(jìn)行性能調(diào)優(yōu)?來自:專題
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- 淺談深度學(xué)習(xí)中的混合精度訓(xùn)練
- 深度學(xué)習(xí)算法中的預(yù)訓(xùn)練(Pretraining)
- 《駕馭MXNet:深度剖析分布式深度學(xué)習(xí)訓(xùn)練的高效之道》
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:遷移學(xué)習(xí)與預(yù)訓(xùn)練模型
- 神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)筆記(四)訓(xùn)練集
- PyTorch 深度學(xué)習(xí)實(shí)戰(zhàn) |用 TensorFlow 訓(xùn)練神經(jīng)網(wǎng)絡(luò)
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型的分布式訓(xùn)練
- 如何基于ModelArts實(shí)現(xiàn)最快最普惠的深度學(xué)習(xí)訓(xùn)練?
- 深度學(xué)習(xí)算法中的協(xié)同訓(xùn)練(Co-training)