- 深度學(xué)習(xí)模型過擬合 內(nèi)容精選 換一換
-
來自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科
- 深度學(xué)習(xí)模型過擬合 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來自:百科來自:百科
- 深度學(xué)習(xí)模型過擬合 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來自:百科ModelArts模型訓(xùn)練 ModelArts模型訓(xùn)練簡介 ModelArts模型訓(xùn)練,俗稱“建模”,指通過分析手段、方法和技巧對準(zhǔn)備好的數(shù)據(jù)進(jìn)行探索分析,從中發(fā)現(xiàn)因果關(guān)系、內(nèi)部聯(lián)系和業(yè)務(wù)規(guī)律,為商業(yè)目的提供決策參考。訓(xùn)練模型的結(jié)果通常是一個(gè)或多個(gè)機(jī)器學(xué)習(xí)或深度學(xué)習(xí)模型,模型可以應(yīng)用到新的數(shù)據(jù)中,得到預(yù)測、評價(jià)等結(jié)果。來自:專題(1)邊緣節(jié)點(diǎn)云端統(tǒng)一部署和管理 (2)設(shè)備云端統(tǒng)一管理,離線時(shí)本地自閉環(huán) (3)規(guī)則分層處理,規(guī)則云端配置,邊緣進(jìn)行數(shù)據(jù)擬合和實(shí)時(shí)計(jì)算、邊緣閉環(huán)或者根據(jù)規(guī)則上報(bào)云側(cè) (4)統(tǒng)一AI模型開發(fā)和流程調(diào)度,云上訓(xùn)練,邊緣執(zhí)行 (5)云側(cè)服務(wù)和邏輯按需推至邊緣,服務(wù)協(xié)同、數(shù)據(jù)協(xié)同、Function協(xié)同來自:百科Engine)作為算子的兵工廠,為基于昇騰AI處理器運(yùn)行的神經(jīng)網(wǎng)絡(luò)提供算子開發(fā)能力,用TBE語言編寫的TBE算子來構(gòu)建各種神經(jīng)網(wǎng)絡(luò)模型。同時(shí),TBE對算子也提供了封裝調(diào)用能力。在TBE中有一個(gè)優(yōu)化過的神經(jīng)網(wǎng)絡(luò)TBE標(biāo)準(zhǔn)算子庫,開發(fā)者可以直接利用標(biāo)準(zhǔn)算子庫中的算子實(shí)現(xiàn)高性能的神經(jīng)網(wǎng)絡(luò)計(jì)算。除此之外,TBE來自:百科分鐘,完成視頻課程的學(xué)習(xí)后,可以通過隨堂作業(yè)來檢驗(yàn)學(xué)習(xí)效果。同時(shí),完成作業(yè)的選手有機(jī)會(huì)獲得官方送出的精美禮品。 長期賽 1、 本次大賽長期開放,報(bào)名和參賽無時(shí)間限制 2、大賽以單人或2-5人組隊(duì)參賽,且每位參賽者只能加入一支隊(duì)伍 3、 報(bào)名成功后,參賽隊(duì)伍通過一站式 AI開發(fā)平臺(tái) M來自:百科
- 深度學(xué)習(xí)筆記(五):欠擬合、過擬合
- 深度學(xué)習(xí)基礎(chǔ)知識(shí)--2.4 過擬合與欠擬合
- 機(jī)器學(xué)習(xí)--模型評估、過擬合和欠擬合、模型驗(yàn)證
- 深度學(xué)習(xí)擬合,欠擬合筆記
- 神經(jīng)網(wǎng)絡(luò)--從0開始搭建過擬合和防過擬合模型
- 機(jī)器學(xué)習(xí)模型的過擬合問題常見解決
- 深度學(xué)習(xí)模型優(yōu)化與過擬合抑制-從數(shù)據(jù)增強(qiáng)到正則化的綜合策略
- 常見的解決CNN模型過擬合
- 過擬合和欠擬合:機(jī)器學(xué)習(xí)模型中的兩個(gè)重要概念
- 欠擬合和過擬合(一)
- 開發(fā)深度學(xué)習(xí)模型
- 在ModelArts訓(xùn)練得到的模型欠擬合怎么辦?
- 大模型開發(fā)基本概念
- 如何調(diào)整訓(xùn)練參數(shù),使盤古大模型效果最優(yōu)
- 優(yōu)化訓(xùn)練超參數(shù)
- 調(diào)優(yōu)典型問題
- 為什么微調(diào)后的盤古大模型只能回答訓(xùn)練樣本中的問題
- 為什么微調(diào)后的盤古大模型總是重復(fù)相同的回答
- 數(shù)據(jù)量和質(zhì)量均滿足要求,為什么盤古大模型微調(diào)效果不好
- 為什么微調(diào)后的盤古大模型的回答中會(huì)出現(xiàn)亂碼