- 深度學(xué)習(xí)模型過(guò)擬合 內(nèi)容精選 換一換
-
華為云計(jì)算 云知識(shí) 推理模型的遷移與調(diào)優(yōu) 推理模型的遷移與調(diào)優(yōu) 時(shí)間:2020-12-08 10:39:19 本課程主要介紹如何將第三方框架訓(xùn)練出來(lái)的模型轉(zhuǎn)換成昇騰專用模型,并進(jìn)行調(diào)優(yōu)。 目標(biāo)學(xué)員 AI領(lǐng)域的開發(fā)者 課程目標(biāo) 通過(guò)對(duì)教材的解讀+實(shí)戰(zhàn)演示,使學(xué)員學(xué)會(huì)使用模型轉(zhuǎn)換工具遷移所需要的預(yù)訓(xùn)練模型。來(lái)自:百科優(yōu)好的離線模型。離線模型生成器主要用來(lái)生成可以高效執(zhí)行在昇騰AI處理器上的離線模型。 離線模型生成器的工作原理如上圖所示,在接收到原始模型后,對(duì)卷積神經(jīng)網(wǎng)絡(luò)模型進(jìn)行模型解析、量化、編譯和序列化四個(gè)步驟: 1、解析 在解析過(guò)程中,離線模型生成器支持不同框架下的原始網(wǎng)絡(luò)模型解析,提煉來(lái)自:百科
- 深度學(xué)習(xí)模型過(guò)擬合 相關(guān)內(nèi)容
-
框架管理器離線模型加載介紹 框架管理器離線模型加載介紹 時(shí)間:2020-08-19 17:05:24 框架管理器中離線模型生成器完成離線模型生成后,由離線模型執(zhí)行器將模型加載到運(yùn)行管理器中,與昇騰AI處理器進(jìn)行融合后,才可以進(jìn)行推理計(jì)算,這個(gè)過(guò)程中離線模型執(zhí)行器發(fā)揮了主要的模型執(zhí)行作用。來(lái)自:百科華為云計(jì)算 云知識(shí) 使用MindSpore開發(fā)訓(xùn)練模型識(shí)別手寫數(shù)字 使用MindSpore開發(fā)訓(xùn)練模型識(shí)別手寫數(shù)字 時(shí)間:2020-12-01 14:59:14 本實(shí)驗(yàn)指導(dǎo)用戶在短時(shí)間內(nèi),了解和熟悉使用MindSpore進(jìn)行模型開發(fā)和訓(xùn)練的基本流程,并利用ModelArts訓(xùn)練管理服務(wù)完成一次訓(xùn)練任務(wù)。來(lái)自:百科
- 深度學(xué)習(xí)模型過(guò)擬合 更多內(nèi)容
-
通過(guò)本課程的學(xué)習(xí),使學(xué)員了解: 1.人工智能的邊界與應(yīng)用場(chǎng)景。 2.人工智能歷史及發(fā)展方向。 課程大綱 第1章 算法:人工智能的能與不能 第2章 算力:從CPU,GPU到NPU AI開發(fā)平臺(tái) ModelArts ModelArts是面向開發(fā)者的一站式AI開發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供來(lái)自:百科
,并且數(shù)字視覺預(yù)處理各功能模塊都需要統(tǒng)一通過(guò)流程編排器進(jìn)行調(diào)用。 3、數(shù)據(jù)流進(jìn)行神經(jīng)網(wǎng)絡(luò)推理時(shí),需要用到模型推理引擎。模型推理引擎主要利用加載好的模型和輸入的數(shù)據(jù)流完成神經(jīng)網(wǎng)絡(luò)的前向計(jì)算。 4、在模型推理引擎輸出結(jié)果后,后處理引擎再對(duì)模型推理引擎輸出的數(shù)據(jù)進(jìn)行后續(xù)處理,如 圖像識(shí)別 的加框和加標(biāo)識(shí)等處理操作。來(lái)自:百科
華為云計(jì)算 云知識(shí) 華為云Stack 有哪些租戶模型 華為云Stack有哪些租戶模型 時(shí)間:2021-02-27 17:34:31 華為云Stack租戶模型 - 多region管理 1.一級(jí)VDC可以跨Region、AZ使用資源 2.子級(jí)VDC可使用的Region、AZ為父級(jí)VDC關(guān)聯(lián)的Region和AZ的子集來(lái)自:百科
什么是聯(lián)邦學(xué)習(xí) 文檔導(dǎo)讀 簡(jiǎn)介 職業(yè)認(rèn)證考試的學(xué)習(xí)方法 孤立森林:參數(shù)說(shuō)明 神經(jīng)網(wǎng)絡(luò)介紹 安裝須知:安裝場(chǎng)景 線上培訓(xùn)課程介紹 什么是自然語(yǔ)言處理:首次使用NLP 華為云培訓(xùn)體系 典型AI庫(kù) 腳本樣例:Zeppelin 自動(dòng)學(xué)習(xí)簡(jiǎn)介:自動(dòng)學(xué)習(xí)功能介紹 自動(dòng)學(xué)習(xí)簡(jiǎn)介:自動(dòng)學(xué)習(xí)功能介紹來(lái)自:百科
學(xué)習(xí) 區(qū)塊鏈 技術(shù) 課程學(xué)習(xí),動(dòng)手實(shí)驗(yàn),技能認(rèn)證,全面掌握區(qū)塊鏈前沿技術(shù) 在線課程 區(qū)塊鏈概念了解 了解區(qū)塊鏈的基本概念,為學(xué)習(xí)奠定基礎(chǔ)。 區(qū)塊鏈全景實(shí)踐課 本期課程結(jié)合華為云區(qū)塊鏈服務(wù) BCS ,從入門到實(shí)踐,循序漸進(jìn)一站式學(xué)習(xí)。5節(jié)實(shí)戰(zhàn)精品課,涵蓋B CS 基礎(chǔ)概念、各行各業(yè)的應(yīng)用現(xiàn)狀來(lái)自:專題
特點(diǎn):構(gòu)建專有的自然語(yǔ)言處理分類模型,將大量的政務(wù)詢問(wèn)分發(fā)到對(duì)應(yīng)的部門,顯著提高工作效率。 優(yōu)勢(shì):針對(duì)場(chǎng)景領(lǐng)域提供預(yù)訓(xùn)練模型,效果遠(yuǎn)好于通用自然語(yǔ)言處理模型??筛鶕?jù)使用過(guò)程中的反饋持續(xù)優(yōu)化模型。 商品識(shí)別 特點(diǎn):構(gòu)建商品視覺自動(dòng)識(shí)別的模型,可用于無(wú)人超市等場(chǎng)景。 優(yōu)勢(shì):用戶自定義模型可以實(shí)現(xiàn)99.來(lái)自:百科
AI開發(fā)平臺(tái)ModelArts ModelArts是面向開發(fā)者的一站式AI開發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Training、自動(dòng)化模型生成,及端-邊-云模型按需部署能力,幫助用戶快速創(chuàng)建和部署模型,管理全周期AI工作流。 產(chǎn)品詳情立即注冊(cè)一元域名華為 云桌面 [免來(lái)自:百科
華為云計(jì)算 云知識(shí) 什么是 圖像搜索 什么是圖像搜索 時(shí)間:2020-09-16 11:27:14 圖像搜索( Image Search )基于深度學(xué)習(xí)與圖像識(shí)別技術(shù),結(jié)合不同應(yīng)用業(yè)務(wù)和行業(yè)場(chǎng)景,利用特征向量化與搜索能力,幫助您從指定圖庫(kù)中搜索相同或相似的圖片。 圖像搜索服務(wù)以開放API(Application來(lái)自:百科
- 深度學(xué)習(xí)筆記(五):欠擬合、過(guò)擬合
- 深度學(xué)習(xí)基礎(chǔ)知識(shí)--2.4 過(guò)擬合與欠擬合
- 機(jī)器學(xué)習(xí)--模型評(píng)估、過(guò)擬合和欠擬合、模型驗(yàn)證
- 深度學(xué)習(xí)擬合,欠擬合筆記
- 神經(jīng)網(wǎng)絡(luò)--從0開始搭建過(guò)擬合和防過(guò)擬合模型
- 機(jī)器學(xué)習(xí)模型的過(guò)擬合問(wèn)題常見解決
- 深度學(xué)習(xí)模型優(yōu)化與過(guò)擬合抑制-從數(shù)據(jù)增強(qiáng)到正則化的綜合策略
- 常見的解決CNN模型過(guò)擬合
- 過(guò)擬合和欠擬合:機(jī)器學(xué)習(xí)模型中的兩個(gè)重要概念
- 欠擬合和過(guò)擬合(一)
- 開發(fā)深度學(xué)習(xí)模型
- 在ModelArts訓(xùn)練得到的模型欠擬合怎么辦?
- 如何調(diào)整訓(xùn)練參數(shù),使盤古大模型效果最優(yōu)
- 大模型開發(fā)基本概念
- 優(yōu)化訓(xùn)練超參數(shù)
- 調(diào)優(yōu)典型問(wèn)題
- 為什么微調(diào)后的盤古大模型總是重復(fù)相同的回答
- 為什么微調(diào)后的盤古大模型只能回答訓(xùn)練樣本中的問(wèn)題
- 數(shù)據(jù)量和質(zhì)量均滿足要求,為什么盤古大模型微調(diào)效果不好
- 為什么微調(diào)后的盤古大模型的回答中會(huì)出現(xiàn)亂碼