- 深度學(xué)習(xí)模型對(duì)數(shù)據(jù)量的要求 內(nèi)容精選 換一換
-
理器的應(yīng)用程序上。它需要更多處理器核數(shù)、大量的內(nèi)存和高吞吐量的存儲(chǔ)系統(tǒng)。該規(guī)格使用V5 CPU服務(wù)器,并結(jié)合IB網(wǎng)卡,應(yīng)用于裸金屬服務(wù)器快速發(fā)放場景。 GPU加速型:GPU加速型裸金屬服務(wù)器能夠提供優(yōu)秀的浮點(diǎn)計(jì)算能力,從容應(yīng)對(duì)高實(shí)時(shí)、高并發(fā)的海量計(jì)算場景。特別適合于深度學(xué)習(xí),科學(xué)來自:百科云知識(shí) K8S社區(qū)架構(gòu)中對(duì)各層的詳細(xì)定義 K8S社區(qū)架構(gòu)中對(duì)各層的詳細(xì)定義 時(shí)間:2021-06-30 19:00:15 K8S社區(qū)架構(gòu)中對(duì)Kubernetes的分層架構(gòu)有詳細(xì)的定義。 1. 內(nèi)核層 Kubernetes最核心功能,對(duì)外提供API構(gòu)建高層的應(yīng)用,對(duì)內(nèi)提供插件式應(yīng)用執(zhí)行環(huán)境;來自:百科
- 深度學(xué)習(xí)模型對(duì)數(shù)據(jù)量的要求 相關(guān)內(nèi)容
-
如何知道學(xué)習(xí)卡是否已激活成功? 如果您在激活學(xué)習(xí)卡的過程中看到“學(xué)習(xí)卡已成功激活”的提示界面,表示激活操作成功。 接下來您可以登錄優(yōu)學(xué)院平臺(tái),在【課程】菜單下可以看到學(xué)習(xí)卡對(duì)應(yīng)的課程,證明學(xué)習(xí)卡已激活成功。 如果您既沒有看到學(xué)習(xí)卡成功激活的提示,也無法正常登錄,請(qǐng)重新激活學(xué)習(xí)卡或撥打來自:云商店15:31:03 實(shí)驗(yàn)配置了AI1開發(fā)環(huán)境和典型樣例指導(dǎo)書,供您選擇感興趣的案例完成應(yīng)用開發(fā)。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 ① 了解基于昇騰310進(jìn)行智能應(yīng)用開發(fā)的常用流程; ② 學(xué)習(xí)如何基于昇騰310(Atlas300)實(shí)現(xiàn)典型網(wǎng)絡(luò)應(yīng)用的開發(fā)(Python)。 實(shí)驗(yàn)摘要 1.準(zhǔn)備環(huán)境 2.啟動(dòng)環(huán)境 3來自:百科
- 深度學(xué)習(xí)模型對(duì)數(shù)據(jù)量的要求 更多內(nèi)容
-
言中的正則表達(dá)式進(jìn)行文本信息的匹配、多線程執(zhí)行任務(wù)的實(shí)現(xiàn)和Python中類的魔法方法的使用。 基于深度學(xué)習(xí)算法的 語音識(shí)別 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語音數(shù)據(jù)集THCHS30進(jìn)行語音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來自:專題放置狀態(tài)的檢測,檢測應(yīng)答器是否處于鐵路軌枕上的正確位置。算法優(yōu)化是指對(duì)算法的有關(guān)性能進(jìn)行優(yōu)化,如時(shí)間復(fù)雜度、空間復(fù)雜度、正確性、健壯性。大數(shù)據(jù)時(shí)代到來,算法要處理數(shù)據(jù)的數(shù)量級(jí)也越來越大以及處理問題的場景千變?nèi)f化。 為了增強(qiáng)算法的處理問題的能力,對(duì)算法進(jìn)行優(yōu)化是必不可少的。算法優(yōu)化一般是對(duì)算法結(jié)構(gòu)和收斂進(jìn)行優(yōu)化。來自:云商店15:46:18 繁多的AI工具安裝配置、數(shù)據(jù)準(zhǔn)備、模型訓(xùn)練慢等是困擾AI工程師的諸多難題。為解決這個(gè)難題,將一站式的 AI開發(fā)平臺(tái) (ModelArts)提供給開發(fā)者,從數(shù)據(jù)準(zhǔn)備到算法開發(fā)、模型訓(xùn)練,最后把模型部署起來,集成到生產(chǎn)環(huán)境。一站式完成所有任務(wù)。ModelArts的功能總覽如下圖所示。來自:百科華為云計(jì)算 云知識(shí) 哪些情況對(duì)云遷移不友好? 哪些情況對(duì)云遷移不友好? 時(shí)間:2021-01-20 09:44:47 華為云遷移服務(wù)是指,華為提供的將客戶物理服務(wù)器上或其他虛擬化/云平臺(tái)上的業(yè)務(wù)系統(tǒng)遷移至華為云平臺(tái)上的一種服務(wù)。 云遷移服務(wù)并不是對(duì)所有場景的遷移都友好,主要受限于三個(gè)方面:來自:百科通過本課程的學(xué)習(xí)使學(xué)員掌握深度學(xué)習(xí)平臺(tái)應(yīng)用及入門深度學(xué)習(xí)。 課程大綱 第1節(jié) 導(dǎo)讀&往期內(nèi)容回顧 第2節(jié) 深度學(xué)習(xí)平臺(tái)介紹 第3節(jié) 深度學(xué)習(xí)入門示例介紹 第4節(jié) 神經(jīng)網(wǎng)絡(luò)構(gòu)建多分類模型 第5節(jié) 華為云深度學(xué)習(xí)平臺(tái)實(shí)操演練 華為云 面向未來的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)來自:百科可定制化 針對(duì)客戶的特定場景需求,定制垂直領(lǐng)域的語音識(shí)別模型,識(shí)別效果更精確 支持熱詞 針對(duì)專業(yè)詞匯,支持上傳至熱詞表,增加專業(yè)詞匯的語音識(shí)別準(zhǔn)確率 一句話識(shí)別 對(duì)時(shí)長較短(1分鐘以內(nèi))的語音進(jìn)行識(shí)別,提供良好的可擴(kuò)展性,支持熱詞定制 錄音文件識(shí)別 對(duì)于錄制的長語音進(jìn)行識(shí)別,轉(zhuǎn)寫來自:百科內(nèi)容審核 服務(wù)提供圖文視頻內(nèi)容檢測,覆蓋涉黃、廣告、涉暴等多種違規(guī)風(fēng)險(xiǎn)的內(nèi)容審核,以及檢測圖像清晰度和構(gòu)圖質(zhì)量等功能。 內(nèi)容審核的應(yīng)用場景 經(jīng)典應(yīng)用場景 不合規(guī)內(nèi)容檢測 不合規(guī)內(nèi)容檢測 不合規(guī)內(nèi)容的識(shí)別和處理是UGC類網(wǎng)站內(nèi)容審核的重點(diǎn)工作,基于內(nèi)容檢測,可以識(shí)別并預(yù)警用戶上傳的不合規(guī)內(nèi)容,幫助客戶快速定位處理,降低業(yè)務(wù)違規(guī)風(fēng)險(xiǎn),維護(hù)網(wǎng)站內(nèi)容安全。來自:專題以評(píng)估模型對(duì)未知數(shù)據(jù)的預(yù)測能力。模型評(píng)價(jià)指標(biāo)是評(píng)估模型泛化能力的標(biāo)準(zhǔn),不同的指標(biāo)往往會(huì)導(dǎo)致不同的評(píng)判結(jié)果。 ModelArts模型評(píng)估/診斷功能針對(duì)不同類型模型的評(píng)估任務(wù),提供相應(yīng)的評(píng)估指標(biāo)。在展示評(píng)估結(jié)果的同時(shí),會(huì)根據(jù)不同的數(shù)據(jù)特征對(duì)模型進(jìn)行詳細(xì)的評(píng)估,獲得每個(gè)數(shù)據(jù)特征對(duì)評(píng)估指來自:百科一句話識(shí)別:可以實(shí)現(xiàn)1分鐘以內(nèi)音頻到文字的轉(zhuǎn)換。對(duì)于用戶上傳的二進(jìn)制音頻格式數(shù)據(jù),系統(tǒng)經(jīng)過處理,生成語音對(duì)應(yīng)的文字。 錄音文件識(shí)別:對(duì)于錄制的長語音進(jìn)行識(shí)別,轉(zhuǎn)寫成文字,提供不同領(lǐng)域模型,具備良好的可擴(kuò)展性,支持熱詞定制。 ASRC優(yōu)勢 高識(shí)別率 基于深度學(xué)習(xí)技術(shù),對(duì)特定領(lǐng)域場景和語料進(jìn)行優(yōu)化,識(shí)別率達(dá)到業(yè)界領(lǐng)先。來自:百科
- DL之模型調(diào)參:深度學(xué)習(xí)算法模型優(yōu)化參數(shù)之對(duì)深度學(xué)習(xí)模型的超參數(shù)采用網(wǎng)格搜索進(jìn)行模型調(diào)優(yōu)(建議收藏)
- 深度學(xué)習(xí)模型編譯技術(shù)
- 深度學(xué)習(xí)應(yīng)用篇-元學(xué)習(xí)[14]:基于優(yōu)化的元學(xué)習(xí)-MAML模型、LEO模型、Reptile模型
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- 深度學(xué)習(xí)-通用模型調(diào)試技巧
- 安裝Linux系統(tǒng)對(duì)硬件的要求
- 利用深度學(xué)習(xí)建立流失模型
- 基于TensorFlow的深度學(xué)習(xí)模型優(yōu)化策略
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:Transformer模型
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:遷移學(xué)習(xí)與預(yù)訓(xùn)練模型