- 深度學(xué)習(xí) 特征層相加 內(nèi)容精選 換一換
-
來自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科
- 深度學(xué)習(xí) 特征層相加 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來自:百科LeNet-5由輸入層、卷積層、池化層和全連接層組成。輸入層用于輸入數(shù)據(jù);卷積層通過卷積運(yùn)算對(duì)輸入進(jìn)行局部特征提取;池化層通過下采樣的方式降低特征圖的分辨率,從而降低輸出對(duì)位置和形變的敏感度,同時(shí)還可降低網(wǎng)絡(luò)中的參數(shù)和計(jì)算量;全連接層將局部特征通過權(quán)值矩陣組裝成完整的圖像,完成特征空間到真實(shí)來自:百科
- 深度學(xué)習(xí) 特征層相加 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的 語音識(shí)別 基于深度學(xué)習(xí)算法的語音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語音數(shù)據(jù)集THCHS30進(jìn)行語音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來自:百科華為云計(jì)算 云知識(shí) GaussDB 的存儲(chǔ)抽象層(SAL) GaussDB的存儲(chǔ)抽象層(SAL) 時(shí)間:2021-06-16 16:52:38 數(shù)據(jù)庫 存儲(chǔ)抽象層 (SAL)是邏輯層,將數(shù)據(jù)存儲(chǔ)和 SQL 前端、事務(wù)、查詢執(zhí)行等進(jìn)行隔離; 由在 SQL 節(jié)點(diǎn)上執(zhí)行的公共日志模塊和存儲(chǔ)節(jié)點(diǎn)上執(zhí)行的來自:百科封禁:幫助您一鍵封禁來自指定國內(nèi)省份或海外地區(qū)的IP的訪問請(qǐng)求。 Web應(yīng)用防火墻 能在應(yīng)用層理解分析HTTP會(huì)話,因此能有效的防止各類應(yīng)用層攻擊,同時(shí)他向下兼容,具備網(wǎng)絡(luò)防火墻的功能。 傳統(tǒng)防火墻可保護(hù)服務(wù)器之間的信息流,而Web應(yīng)用程序防火墻則能夠過濾特定Web應(yīng)用程序的流量。來自:百科可定制特定垂直領(lǐng)域的語言層模型,可識(shí)別更多專有詞匯和行業(yè)術(shù)語,進(jìn)一步提高識(shí)別準(zhǔn)確率。 語音識(shí)別 語音識(shí)別服務(wù)可以實(shí)現(xiàn)1分鐘以內(nèi)、不超過4MB的音頻到文字的轉(zhuǎn)換。對(duì)于用戶上傳的完整的錄音文件,系統(tǒng)通過處理,生成語音對(duì)應(yīng)文字內(nèi)容。 ASR優(yōu)勢 效果出眾 使用深度學(xué)習(xí)技術(shù),語音識(shí)別準(zhǔn)確率超過95%,在業(yè)界具有一定的技術(shù)優(yōu)勢。來自:百科WAF 的出現(xiàn)是由于傳統(tǒng)防火墻無法對(duì)應(yīng)用層的攻擊進(jìn)行有效抵抗,并且IPS也無法從根本上防護(hù)應(yīng)用層的攻擊。因此出現(xiàn)了保護(hù)Web應(yīng)用安全的Web應(yīng)用防火墻系統(tǒng)(簡稱“WAF”)。 WAF是通過檢測應(yīng)用層的數(shù)據(jù)來進(jìn)行訪問控制或者對(duì)應(yīng)用進(jìn)行控制,而傳統(tǒng)防火墻對(duì)三、四層數(shù)據(jù)進(jìn)行過濾,從而進(jìn)行訪問控制,不對(duì)應(yīng)用層數(shù)據(jù)進(jìn)行分析。來自:百科組件。 彈性云服務(wù)器 創(chuàng)建成功后,您就可以像使用自己的本地PC或物理服務(wù)器一樣,在云上使用彈性云服務(wù)器。 產(chǎn)品詳情 幫助文檔 云計(jì)算平臺(tái) 有什么特征 華為云計(jì)算有豐富的云服務(wù)產(chǎn)品 計(jì)算服務(wù)分類下的服務(wù)包括:彈性云服務(wù)器 E CS 、GPU加速云服務(wù)器、裸金屬服務(wù)器 BMS、 云手機(jī) CPH、彈性伸縮AS、鏡像服務(wù)來自:專題手把手教你玩轉(zhuǎn) 人臉識(shí)別 ,初探深度學(xué)習(xí)。 課程簡介 本課程主要內(nèi)容包括:人臉識(shí)別原理、機(jī)器如何提取圖像的特征。 課程目標(biāo) 通過本課程學(xué)習(xí),了解機(jī)器學(xué)習(xí)的方法及快速掌握人臉識(shí)別應(yīng)用。 課程大綱 第1節(jié) 機(jī)器學(xué)習(xí)內(nèi)容回顧 第2節(jié) 機(jī)器是如何進(jìn)行圖像分類 第3節(jié) 圖像的特征提取 第4節(jié) 初探深度學(xué)習(xí) 第5節(jié)來自:百科,減少火災(zāi)隱患。 方案優(yōu)勢 1. 行業(yè)應(yīng)用上算法開發(fā)經(jīng)驗(yàn)積累豐富:算法會(huì)自動(dòng)利用相關(guān)先驗(yàn)知識(shí)對(duì)深度學(xué)習(xí)模型的檢測結(jié)果進(jìn)行判別,排除誤檢測,準(zhǔn)確可靠。利用數(shù)字圖像處理技術(shù)和先進(jìn)的深度學(xué)習(xí)技術(shù),可對(duì)廚房進(jìn)行全天候智能監(jiān)測。 2. 針對(duì)客戶需求進(jìn)行定制化功能開發(fā):針對(duì)不同行業(yè)應(yīng)用需求,來自:云商店
- 深度學(xué)習(xí)之快速理解卷積層
- 深度學(xué)習(xí)筆記(三):BatchNorm(BN)層
- 《深度剖析:特征工程—機(jī)器學(xué)習(xí)的隱秘基石》
- 語音情感識(shí)別之手工特征深度學(xué)習(xí)方法
- 基于深度學(xué)習(xí)的油藏地質(zhì)特征提取方法
- 《深度剖析:特征工程—機(jī)器學(xué)習(xí)的隱秘基石》
- ASK-HAR:多尺度特征提取的深度學(xué)習(xí)模型
- 《Keras深度學(xué)習(xí)實(shí)戰(zhàn)》—2.8 共享層模型
- 【論文筆記】語音情感識(shí)別之手工特征深度學(xué)習(xí)方法
- 深度學(xué)習(xí)基礎(chǔ)-網(wǎng)絡(luò)層參數(shù)初始化詳解