- 圖嵌入的卷積神經(jīng)網(wǎng)絡(luò) 內(nèi)容精選 換一換
-
華為云計(jì)算 云知識(shí) 實(shí)戰(zhàn)篇:神經(jīng)網(wǎng)絡(luò)賦予機(jī)器識(shí)圖的能力 實(shí)戰(zhàn)篇:神經(jīng)網(wǎng)絡(luò)賦予機(jī)器識(shí)圖的能力 時(shí)間:2020-12-09 09:28:38 深度神經(jīng)網(wǎng)絡(luò)讓機(jī)器擁有了視覺的能力,實(shí)戰(zhàn)派帶你探索深度學(xué)習(xí)! 課程簡(jiǎn)介 本課程主要內(nèi)容包括:深度學(xué)習(xí)平臺(tái)介紹、神經(jīng)網(wǎng)絡(luò)構(gòu)建多分類模型、經(jīng)典入門示例詳解:構(gòu)建手寫數(shù)字識(shí)別模型。來自:百科量不同形態(tài)的手寫數(shù)字圖片訓(xùn)練集,分為訓(xùn)練集和測(cè)試集。訓(xùn)練集涵蓋6萬(wàn)張手寫數(shù)字圖片,測(cè)試級(jí)涵蓋1萬(wàn)張手寫數(shù)字圖片。每一張圖片皆為經(jīng)過尺寸標(biāo)準(zhǔn)化的黑白圖像,是28*28像素,像素值為0或者1的二值化圖像。MNIST數(shù)據(jù)集的原始圖像是黑白的,但在實(shí)際訓(xùn)練中使用數(shù)據(jù)增強(qiáng)后的圖片能夠獲得更好的訓(xùn)練效果。來自:百科
- 圖嵌入的卷積神經(jīng)網(wǎng)絡(luò) 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 神經(jīng)網(wǎng)絡(luò)基礎(chǔ) 神經(jīng)網(wǎng)絡(luò)基礎(chǔ) 時(shí)間:2020-12-07 16:53:14 HCIP-AI EI Developer V2.0系列課程。神經(jīng)網(wǎng)絡(luò)是深度學(xué)習(xí)的重要基礎(chǔ),理解神經(jīng)網(wǎng)絡(luò)的基本原理、優(yōu)化目標(biāo)與實(shí)現(xiàn)方法是學(xué)習(xí)后面內(nèi)容的關(guān)鍵,這也是本課程的重點(diǎn)所在。 目標(biāo)學(xué)員來自:百科也可實(shí)現(xiàn)數(shù)據(jù)格式的轉(zhuǎn)換。離線模型生成器收到神經(jīng)網(wǎng)絡(luò)生成的中間圖并對(duì)中間圖中的每一節(jié)點(diǎn)進(jìn)行描述,逐個(gè)解析每個(gè)算子的輸入和輸出。離線模型生成器分析當(dāng)前算子的輸入數(shù)據(jù)來源,獲取上一層中與當(dāng)前算子直接進(jìn)行銜接的算子類型,通過TBE算子加速庫(kù)的接口進(jìn)入算子庫(kù)中尋找來源算子的輸出數(shù)據(jù)描述,然來自:百科
- 圖嵌入的卷積神經(jīng)網(wǎng)絡(luò) 更多內(nèi)容
-
別、 語(yǔ)音識(shí)別 、文字識(shí)別等多維度分析,形成層次化的分類標(biāo)簽。 功能描述 場(chǎng)景概念識(shí)別 基于對(duì)視頻中的場(chǎng)景信息的分析,輸出豐富而準(zhǔn)確的概念、場(chǎng)景標(biāo)簽 人物識(shí)別 基于對(duì)視頻中的人物信息的分析,輸出準(zhǔn)確的人物標(biāo)簽 視頻 OCR 識(shí)別視頻中出現(xiàn)的文字內(nèi)容,包括字幕、彈幕、以及部分自然場(chǎng)景文字和藝術(shù)字等來自:百科深度學(xué)習(xí)是一種以人工神經(jīng)網(wǎng)絡(luò)為架構(gòu),對(duì)數(shù)據(jù)進(jìn)行表征學(xué)習(xí)的算法。目前,在圖像、語(yǔ)音識(shí)別、自然語(yǔ)言處理、強(qiáng)化學(xué)習(xí)等許多技術(shù)領(lǐng)域中,深度學(xué)習(xí)獲得了廣泛的應(yīng)用,并且在某些問題上已經(jīng)達(dá)到甚至超越了人類的水平。本課程將介紹深度學(xué)習(xí)算法的知識(shí)。 課程簡(jiǎn)介 本課程將會(huì)探討深度學(xué)習(xí)中的基礎(chǔ)理論、算法、使用方法、技巧與不同的深度學(xué)習(xí)模型。來自:百科DL)是機(jī)器學(xué)習(xí)的一種,機(jī)器學(xué)習(xí)是實(shí)現(xiàn)人工智能的必由之路。深度學(xué)習(xí)的概念源于人工神經(jīng)網(wǎng)絡(luò)的研究,包含多個(gè)隱藏層的多層感知器就是深度學(xué)習(xí)結(jié)構(gòu)。深度學(xué)習(xí)通過組合低層特征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦來自:百科華為云好望商城打手機(jī)智能檢測(cè)主要應(yīng)用于禁止打手機(jī)的場(chǎng)景下,利用智能攝像機(jī)的前端AI技術(shù)對(duì)現(xiàn)場(chǎng)的視頻進(jìn)行實(shí)時(shí)分析,自動(dòng)檢測(cè)是否有人員打手機(jī),實(shí)時(shí)上報(bào)違章人員信息,提高作業(yè)安全。 商品介紹 隨著科技的進(jìn)步,社會(huì)的發(fā)展,手機(jī)在人們生活中占了很大的比重,隨著手機(jī)使用的普及,為防止作業(yè)人員一邊作業(yè)一邊打手機(jī)的情況,從而導(dǎo)致來自:云商店任務(wù)調(diào)度器作為一個(gè)硬件執(zhí)行的任務(wù)驅(qū)動(dòng)者,為昇騰AI處理器提供具體的目標(biāo)任務(wù)。運(yùn)行管理器和任務(wù)調(diào)度器聯(lián)合互動(dòng),共同組成了神經(jīng)網(wǎng)絡(luò)任務(wù)流通向硬件資源的大壩系統(tǒng),實(shí)時(shí)監(jiān)控和有效分發(fā)不同類型的執(zhí)行任務(wù)。 總之,整個(gè)神經(jīng)網(wǎng)絡(luò)軟件為昇騰AI處理器提供一個(gè)軟硬件結(jié)合且功能完備的執(zhí)行流程,助力相關(guān)AI應(yīng)用的開發(fā)。 華為云來自:百科
- 圖卷積神經(jīng)網(wǎng)絡(luò)初探
- 圖卷積神經(jīng)網(wǎng)絡(luò)初探
- 探索圖片的真相--卷積神經(jīng)網(wǎng)絡(luò)
- 《探秘卷積神經(jīng)網(wǎng)絡(luò)的核心—卷積核》
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門到精通》——1.4 卷積神經(jīng)網(wǎng)絡(luò)的缺陷和視圖
- 卷積神經(jīng)網(wǎng)絡(luò)
- 卷積神經(jīng)網(wǎng)絡(luò)
- 卷積神經(jīng)網(wǎng)絡(luò)的定義
- 卷積神經(jīng)網(wǎng)絡(luò)的定義
- 卷積神經(jīng)網(wǎng)絡(luò)中卷積是什么為什么要使用卷積核運(yùn)算