- 卷積神經(jīng)網(wǎng)絡(luò)圖像壓縮 內(nèi)容精選 換一換
-
LeCun等人構(gòu)建的卷積神經(jīng)網(wǎng)絡(luò)LeNet-5在手寫數(shù)字識(shí)別問題中取得成功 ,被譽(yù)為卷積神經(jīng)網(wǎng)絡(luò)的“Hello Word”。LeNet-5以及在此之后產(chǎn)生的變體定義了現(xiàn)代卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu),可謂入門級(jí)神經(jīng)網(wǎng)絡(luò)模型。本次實(shí)踐使用的模型正是LeNet-5。 LeNet-5由輸入層、卷積層、池化來自:百科采用標(biāo)簽排序?qū)W習(xí)算法與卷積神經(jīng)網(wǎng)絡(luò)算法,識(shí)別精度高,支持實(shí)時(shí)識(shí)別與檢測(cè) 簡(jiǎn)單易用 提供符合RESTful的API訪問接口,使用方便,用戶的業(yè)務(wù)系統(tǒng)可快速集成 層次標(biāo)簽 層次化標(biāo)簽庫(kù)完善,支持同時(shí)輸出通用標(biāo)簽與垂直領(lǐng)域細(xì)粒度標(biāo)簽,豐富標(biāo)簽應(yīng)用場(chǎng)景 多維分析 從聲音、動(dòng)作、圖像、文字等多維度來自:百科
- 卷積神經(jīng)網(wǎng)絡(luò)圖像壓縮 相關(guān)內(nèi)容
-
課程目標(biāo) 掌握圖像處理理論和應(yīng)用,具有圖像處理的相關(guān)編程和云上應(yīng)用能力。 課程大綱 第1章 計(jì)算機(jī)視覺概覽 第2章 數(shù)字圖像處理基礎(chǔ) 第3章 圖像預(yù)處理技術(shù) 第4章 圖像處理基本任務(wù) 第5章 特征提取與傳統(tǒng)圖像處理算法 第6章 深度學(xué)習(xí)與卷積神經(jīng)網(wǎng)絡(luò) 第7章 圖像處理實(shí)驗(yàn) 華為云開發(fā)者學(xué)堂來自:百科框架管理器離線模型生成介紹 時(shí)間:2020-08-19 17:00:58 離線模型生成以卷積神經(jīng)網(wǎng)絡(luò)為例,在深度學(xué)習(xí)框架下構(gòu)造好相應(yīng)的網(wǎng)絡(luò)模型,并且訓(xùn)練好原始數(shù)據(jù),再通過離線模型生成器進(jìn)行算子調(diào)度優(yōu)化、權(quán)重?cái)?shù)據(jù)重排和壓縮、內(nèi)存優(yōu)化等,最終生成調(diào)優(yōu)好的離線模型。離線模型生成器主要用來生成可以高效執(zhí)行在昇騰AI處理器上的離線模型。來自:百科
- 卷積神經(jīng)網(wǎng)絡(luò)圖像壓縮 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 神經(jīng)網(wǎng)絡(luò)基礎(chǔ) 神經(jīng)網(wǎng)絡(luò)基礎(chǔ) 時(shí)間:2020-12-07 16:53:14 HCIP-AI EI Developer V2.0系列課程。神經(jīng)網(wǎng)絡(luò)是深度學(xué)習(xí)的重要基礎(chǔ),理解神經(jīng)網(wǎng)絡(luò)的基本原理、優(yōu)化目標(biāo)與實(shí)現(xiàn)方法是學(xué)習(xí)后面內(nèi)容的關(guān)鍵,這也是本課程的重點(diǎn)所在。 目標(biāo)學(xué)員來自:百科使用MindSpore訓(xùn)練手寫數(shù)字識(shí)別模型 基于昇騰AI處理器的算子開發(fā) 電子相冊(cè)智慧整理 基于卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)景區(qū)精準(zhǔn)識(shí)別場(chǎng)景 使用MindSpore訓(xùn)練手寫數(shù)字識(shí)別模型 基于昇騰AI處理器的算子開發(fā) 電子相冊(cè)智慧整理 基于卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)景區(qū)精準(zhǔn)識(shí)別場(chǎng)景 HCIA-AI HCIA-AI 華為認(rèn)證人工智能工程師來自:專題云知識(shí) 大V講堂——神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索 大V講堂——神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索 時(shí)間:2020-12-14 10:07:11 神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索是當(dāng)前深度學(xué)習(xí)最熱門的話題之一,已經(jīng)成為了一大研究潮流。本課程將介紹神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索的理論基礎(chǔ)、應(yīng)用和發(fā)展現(xiàn)狀。 課程簡(jiǎn)介 神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索(NAS)來自:百科基于對(duì)視頻的前后幀信息、光流運(yùn)動(dòng)信息分析、場(chǎng)景內(nèi)容信息識(shí)別等分析,檢測(cè)和識(shí)別視頻動(dòng)作 優(yōu)勢(shì) 多模態(tài)識(shí)別 綜合圖像、光流、聲音等信息,識(shí)別動(dòng)作更準(zhǔn)確 識(shí)別準(zhǔn)確 采用3D卷積神經(jīng)網(wǎng)絡(luò)算法,動(dòng)作識(shí)別準(zhǔn)確度高 對(duì)復(fù)雜場(chǎng)景魯棒性強(qiáng) 對(duì)不同天氣條件、不同的攝像頭角度等復(fù)雜場(chǎng)景的視頻動(dòng)作識(shí)別具有良好的魯棒性來自:百科流程編排器負(fù)責(zé)完成神經(jīng)網(wǎng)絡(luò)在昇騰AI處理器上的落地與實(shí)現(xiàn),統(tǒng)籌了整個(gè)神經(jīng)網(wǎng)絡(luò)生效的過程。 數(shù)字視覺預(yù)處理模塊在輸入之前進(jìn)行一次數(shù)據(jù)處理和修飾,來滿足計(jì)算的格式需求。 張量加速引擎作為神經(jīng)網(wǎng)絡(luò)算子兵工廠,為神經(jīng)網(wǎng)絡(luò)模型源源不斷提供功能強(qiáng)大的計(jì)算算子。 框架管理器將原始神經(jīng)網(wǎng)絡(luò)模型轉(zhuǎn)換成昇來自:百科目標(biāo)檢測(cè):在建筑施工現(xiàn)場(chǎng),基于定制化的圖像識(shí)別目標(biāo)檢測(cè)系統(tǒng),可實(shí)時(shí)監(jiān)測(cè)現(xiàn)場(chǎng)人員是否佩戴安全帽,以降低安全風(fēng)險(xiǎn)。 圖像搜索:基于圖像標(biāo)簽的圖像搜索技術(shù),不管用戶輸入關(guān)鍵字,還是輸入一張圖像,都可以快速搜索到想要的圖像。 展開內(nèi)容 收起內(nèi)容 圖像識(shí)別相關(guān)精選推薦 《深度學(xué)習(xí)與圖像識(shí)別:原理與實(shí)踐》—2 圖像識(shí)別前置技術(shù)來自:專題
- 卷積神經(jīng)網(wǎng)絡(luò)壓縮方法總結(jié)
- 卷積神經(jīng)網(wǎng)絡(luò)
- 卷積神經(jīng)網(wǎng)絡(luò)
- 卷積神經(jīng)網(wǎng)絡(luò)之圖像風(fēng)格遷移視覺效果
- 基于CNN卷積神經(jīng)網(wǎng)絡(luò)的圖像分割matlab仿真
- 卷積神經(jīng)網(wǎng)絡(luò)之圖像風(fēng)格遷移視覺效果
- 基于卷積神經(jīng)網(wǎng)絡(luò)的CIFAR10圖像分類
- 卷積神經(jīng)網(wǎng)絡(luò)中卷積是什么為什么要使用卷積核運(yùn)算
- 《探秘卷積神經(jīng)網(wǎng)絡(luò)的核心—卷積核》
- 圖像分類算法:從卷積神經(jīng)網(wǎng)絡(luò)到遷移學(xué)習(xí)