- 基于spark ml機(jī)器學(xué)習(xí)平臺(tái) 內(nèi)容精選 換一換
-
需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類(lèi) 3. 機(jī)器學(xué)習(xí)的整體流程來(lái)自:百科來(lái)自:百科
- 基于spark ml機(jī)器學(xué)習(xí)平臺(tái) 相關(guān)內(nèi)容
-
越來(lái)越重要。其中,Spark是當(dāng)今應(yīng)用最為廣泛通用的大數(shù)據(jù)先進(jìn)技術(shù)之一。BoostKit大數(shù)據(jù)使能套件提供了Spark性能改進(jìn)的各種優(yōu)化技術(shù),包括優(yōu)化的機(jī)器學(xué)習(xí)算法,從而實(shí)現(xiàn)Spark性能倍級(jí)提升。 內(nèi)容大綱: 1. 大數(shù)據(jù)機(jī)器學(xué)習(xí)算法發(fā)展歷程; 2. 機(jī)器學(xué)習(xí)算法優(yōu)化的技術(shù)挑戰(zhàn);來(lái)自:百科第7章 有監(jiān)督學(xué)習(xí)-決策樹(shù) 第8章 有監(jiān)督學(xué)習(xí)-集成算法概述 第9章 有監(jiān)督學(xué)習(xí)-Bagging 第10章 有監(jiān)督學(xué)習(xí)-隨機(jī)森林 第11章 有監(jiān)督學(xué)習(xí)-Boosting 第12章 有監(jiān)督學(xué)習(xí)-Adaboost 第13章 有監(jiān)督學(xué)習(xí)-GBDT 第14章 有監(jiān)督學(xué)習(xí)-Xgboost 第15章來(lái)自:百科
- 基于spark ml機(jī)器學(xué)習(xí)平臺(tái) 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的 語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科造個(gè)性化自適應(yīng)學(xué)習(xí)平臺(tái),實(shí)現(xiàn)課內(nèi)學(xué)習(xí)向課外學(xué)習(xí)的延展,幫助每個(gè)學(xué)生實(shí)現(xiàn)彈性有效的針對(duì)性自主學(xué)習(xí); 區(qū)域網(wǎng)絡(luò)學(xué)習(xí)中心功能框架 (2)家庭教育 通過(guò)建設(shè)家庭教育平臺(tái),讓家長(zhǎng)通過(guò)家庭教育的系統(tǒng)學(xué)習(xí),擁有親子教育能力、自我管理能力、經(jīng)營(yíng)幸福家庭的能力。 (3)老年開(kāi)放學(xué)院 老年教育作為終來(lái)自:云商店華為云計(jì)算 云知識(shí) 基于IoT平臺(tái)構(gòu)建智慧路燈應(yīng)用 基于IoT平臺(tái)構(gòu)建智慧路燈應(yīng)用 時(shí)間:2020-11-30 09:36:38 本實(shí)驗(yàn)指導(dǎo)用戶(hù)基于華為云IoT平臺(tái),快速開(kāi)發(fā)屬于自己的智慧路燈應(yīng)用。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 本實(shí)驗(yàn)將指導(dǎo)您開(kāi)發(fā)一個(gè)基于物聯(lián)網(wǎng)平臺(tái)的智慧路燈應(yīng)用。 通過(guò)本實(shí)驗(yàn),您將能夠:來(lái)自:百科本課程主要介紹云平臺(tái)業(yè)界趨勢(shì)、鯤鵬云平臺(tái)技術(shù)原理及架構(gòu)以及云平臺(tái)使用的典型場(chǎng)景。 立即學(xué)習(xí) 最新文章 “云上中臺(tái) • 重明”:讓數(shù)據(jù)成為企業(yè)核心生產(chǎn)力 覆蓋多樣化業(yè)務(wù)場(chǎng)景,電子簽章化解企業(yè)簽署難題 CAXA PLM云商店登榜,為制造企業(yè)數(shù)字化轉(zhuǎn)型“保駕護(hù)航” 訊方實(shí)訓(xùn)云平臺(tái)——加速教育高質(zhì)量發(fā)展的“數(shù)字底座”!來(lái)自:百科Spark SQL作業(yè)的特點(diǎn)與功能 Spark SQL作業(yè)的特點(diǎn)與功能 數(shù)據(jù)湖探索 DLI是完全兼容Apache Spark,也支持標(biāo)準(zhǔn)的Spark SQL作業(yè), DLI 在開(kāi)源Spark基礎(chǔ)上進(jìn)行了大量的性能優(yōu)化與服務(wù)化改造,不僅兼容Apache Spark生態(tài)和接口,性能較開(kāi)源提升了2來(lái)自:專(zhuān)題測(cè)模型,DC PUE優(yōu)化控制模型等),開(kāi)發(fā)者可以基于模型訓(xùn)練服務(wù),使用嵌入網(wǎng)絡(luò)經(jīng)驗(yàn)的訓(xùn)練平臺(tái)輸入數(shù)據(jù),快速完成模型的開(kāi)發(fā)和訓(xùn)練,形成精準(zhǔn)的模型,用于應(yīng)用服務(wù)開(kāi)發(fā) 優(yōu)勢(shì) 網(wǎng)絡(luò)經(jīng)驗(yàn)嵌入、助力開(kāi)發(fā)者快速完成模型開(kāi)發(fā)訓(xùn)練 NAIE訓(xùn)練平臺(tái)預(yù)置多種預(yù)集成通信模型服務(wù),Zero編碼,讓開(kāi)發(fā)者來(lái)自:百科登錄成功后,點(diǎn)擊網(wǎng)站上方學(xué)習(xí)中心,看到學(xué)習(xí)的課程。 學(xué)生查看學(xué)習(xí)的課程如下圖所示: 3 課程學(xué)習(xí) 3.1 課程內(nèi)容學(xué)習(xí) 點(diǎn)擊課程圖片,進(jìn)入課程主頁(yè)學(xué)習(xí) 章節(jié)導(dǎo)航中,可以看到課程安排需要學(xué)習(xí)的內(nèi)容,如下圖所示 課程內(nèi)容包含:視頻,文檔,網(wǎng)頁(yè),附件,測(cè)驗(yàn)和作業(yè)。 點(diǎn)擊去學(xué)習(xí),可以學(xué)習(xí)該內(nèi)容,視頻學(xué)習(xí)如下圖所示來(lái)自:云商店業(yè)和地區(qū)的需求。 - 靈活:基于華為云彈性計(jì)算服務(wù)(E CS ),可根據(jù)業(yè)務(wù)變化靈活調(diào)整資源配置,實(shí)現(xiàn)按需付費(fèi),節(jié)省成本。同時(shí),支持多種部署模式,包括公有云、私有云和混合云,滿(mǎn)足不同安全和合規(guī)要求。 - 智能:集成華為云人工智能服務(wù)(AI),利用機(jī)器學(xué)習(xí)、自然語(yǔ)言處理等技術(shù),為企業(yè)提來(lái)自:百科傳統(tǒng)集中式AI模式在收斂速度, 數(shù)據(jù)傳輸量, 模型準(zhǔn)確度等方面仍存在巨大挑戰(zhàn)。 b) 邊緣數(shù)據(jù)樣本少,冷啟動(dòng)等問(wèn)題,傳統(tǒng)大數(shù)據(jù)驅(qū)動(dòng)的統(tǒng)計(jì)ML方法無(wú)法收斂、效果差。 c) 數(shù)據(jù)異構(gòu):現(xiàn)有機(jī)器學(xué)習(xí)基于獨(dú)立同分布假設(shè),同一模型用在非獨(dú)立同分布的不同數(shù)據(jù)集的效果差別巨大。 d) 資源受限:相對(duì)云上資源的海量易獲取來(lái)自:百科
- 基于Spark的機(jī)器學(xué)習(xí)實(shí)踐 (八) - 分類(lèi)算法
- 基于Spark的機(jī)器學(xué)習(xí)實(shí)踐 (九) - 聚類(lèi)算法
- 基于Spark的機(jī)器學(xué)習(xí)實(shí)踐 (十) - 降維
- 基于Spark的機(jī)器學(xué)習(xí)實(shí)踐 (六) - 基礎(chǔ)統(tǒng)計(jì)模塊
- 《Spark機(jī)器學(xué)習(xí)進(jìn)階實(shí)戰(zhàn)》——1.2.3 其他機(jī)器學(xué)習(xí)
- 《Spark機(jī)器學(xué)習(xí)進(jìn)階實(shí)戰(zhàn)》——1.3 機(jī)器學(xué)習(xí)分類(lèi)
- 機(jī)器學(xué)習(xí)---pySpark案例
- 《Spark機(jī)器學(xué)習(xí)進(jìn)階實(shí)戰(zhàn)》
- Apache Spark 機(jī)器學(xué)習(xí)概述
- Spark MLlib – Apache Spark 的機(jī)器學(xué)習(xí)庫(kù)