- 機(jī)器學(xué)習(xí)中的必修數(shù)學(xué) 內(nèi)容精選 換一換
-
機(jī)器學(xué)習(xí)的整體流程 4. 其他機(jī)器學(xué)習(xí)重要方法 5. 機(jī)器學(xué)習(xí)的常見(jiàn)算法 6. 案例講解 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。 華為云將持續(xù)創(chuàng)新,攜手客戶、合作伙伴和開(kāi)發(fā)者,致力于讓云無(wú)處不在,讓智能無(wú)所不及,共建智能世界云底座。來(lái)自:百科第7章 有監(jiān)督學(xué)習(xí)-決策樹(shù) 第8章 有監(jiān)督學(xué)習(xí)-集成算法概述 第9章 有監(jiān)督學(xué)習(xí)-Bagging 第10章 有監(jiān)督學(xué)習(xí)-隨機(jī)森林 第11章 有監(jiān)督學(xué)習(xí)-Boosting 第12章 有監(jiān)督學(xué)習(xí)-Adaboost 第13章 有監(jiān)督學(xué)習(xí)-GBDT 第14章 有監(jiān)督學(xué)習(xí)-Xgboost 第15章來(lái)自:百科
- 機(jī)器學(xué)習(xí)中的必修數(shù)學(xué) 相關(guān)內(nèi)容
-
課程簡(jiǎn)介 人工智能的技術(shù)歸根到底都建立在數(shù)學(xué)模型之上,本課程為大家介紹AI中所用到的數(shù)學(xué)基礎(chǔ)知識(shí)。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、掌握線性代數(shù)的基礎(chǔ)知識(shí)及應(yīng)用。 2、掌握概率論與數(shù)理統(tǒng)計(jì)的基礎(chǔ)知識(shí)及應(yīng)用。 3、理解信息熵與基尼系數(shù)的相關(guān)知識(shí)。 4、掌握常用的最優(yōu)化算法及應(yīng)用。來(lái)自:百科使用ModelArts中開(kāi)發(fā)工具學(xué)習(xí)Python(高級(jí)) 使用ModelArts中開(kāi)發(fā)工具學(xué)習(xí)Python(高級(jí)) 時(shí)間:2020-12-02 10:27:51 本實(shí)驗(yàn)指導(dǎo)用戶基于Notebook來(lái)學(xué)習(xí)Python語(yǔ)言中的正則表達(dá)式進(jìn)行文本信息的匹配、多線程執(zhí)行任務(wù)的實(shí)現(xiàn)和Python中類的魔法方法的使用。來(lái)自:百科
- 機(jī)器學(xué)習(xí)中的必修數(shù)學(xué) 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) IAM中的項(xiàng)目 IAM中的項(xiàng)目 時(shí)間:2021-07-01 15:17:50 華為云的每個(gè)區(qū)域默認(rèn)對(duì)應(yīng)一個(gè)項(xiàng)目,這個(gè)項(xiàng)目由系統(tǒng)預(yù)置,用來(lái)隔離物理區(qū)域間的資源(計(jì)算資源、存儲(chǔ)資源和網(wǎng)絡(luò)資源),以區(qū)域默認(rèn)項(xiàng)目為單位進(jìn)行授權(quán),IAM用戶可以訪問(wèn)您賬號(hào)中該區(qū)域的所有資源。 如果來(lái)自:百科
當(dāng)?shù)鼐W(wǎng)絡(luò),且可動(dòng)態(tài)切換,使設(shè)備可以始終處于優(yōu)質(zhì)網(wǎng)速中。通過(guò)這種方式,不但增強(qiáng)了整體用戶體驗(yàn),也為設(shè)備的管理分配帶來(lái)極大便利。 那么空中寫(xiě)卡,更改的到底是物聯(lián)網(wǎng)卡的什么號(hào)碼呢? 物聯(lián)網(wǎng)中,智能設(shè)備僅需要“上網(wǎng)”,不需要進(jìn)行類似手機(jī)的通話,因此物聯(lián)網(wǎng)卡通常只使用(International來(lái)自:百科
華為云計(jì)算 云知識(shí) CBR中的基礎(chǔ)概念 CBR中的基礎(chǔ)概念 時(shí)間:2021-07-02 10:50:39 CBR中的常用基礎(chǔ)概念有: 1. 存儲(chǔ)庫(kù) 云備份使用存儲(chǔ)庫(kù)來(lái)存放備份,存儲(chǔ)庫(kù)分為備份存儲(chǔ)庫(kù)和復(fù)制存儲(chǔ)庫(kù)兩種。 2. 復(fù)制 復(fù)制是指將一個(gè)區(qū)域已經(jīng)生成的備份 數(shù)據(jù)復(fù)制 到另一個(gè)區(qū)域。來(lái)自:百科
數(shù)據(jù)庫(kù)安全 基礎(chǔ) HCIA- GaussDB 系列課程。數(shù)據(jù)庫(kù)作為核心的基礎(chǔ)軟件,在我們的系統(tǒng)架構(gòu)中處于系統(tǒng)的最末端,它是查詢和存儲(chǔ)數(shù)據(jù)的系統(tǒng),是各業(yè)務(wù)數(shù)據(jù)最終落地的承載者,而當(dāng)今社會(huì)最值錢(qián)的又是擁有大量的數(shù)據(jù),因此其數(shù)據(jù)庫(kù)安全性至關(guān)重要。 立即學(xué)習(xí) 最新文章 替換VolcanoJobreplace來(lái)自:百科
形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺(jué)、 語(yǔ)音識(shí)別 、自然語(yǔ)言處理等其他領(lǐng)域。來(lái)自:百科
- 機(jī)器學(xué)習(xí)中的數(shù)學(xué)意義
- 機(jī)器學(xué)習(xí)中的數(shù)學(xué) —— 向量篇
- 機(jī)器學(xué)習(xí)中的數(shù)學(xué)(2)-線性回歸,偏差、方差權(quán)衡
- 機(jī)器學(xué)習(xí)中的數(shù)學(xué)(2)-線性回歸,偏差、方差權(quán)衡
- 【機(jī)器學(xué)習(xí)算法專題(蓄力計(jì)劃)】十、機(jī)器學(xué)習(xí)中必備的高等數(shù)學(xué)和線性代數(shù)基礎(chǔ)
- 機(jī)器學(xué)習(xí)中的數(shù)學(xué)(1)-回歸(regression)、梯度下降(gradient descent)
- 機(jī)器學(xué)習(xí)中的數(shù)學(xué)(5)-強(qiáng)大的矩陣奇異值分解(SVD)及其應(yīng)用
- 數(shù)學(xué)建模學(xué)習(xí)(68):機(jī)器學(xué)習(xí)訓(xùn)練模型的保存與模型使用
- 機(jī)器學(xué)習(xí)中的數(shù)學(xué)(4)-線性判別分析(LDA), 主成分分析(PCA)
- 機(jī)器學(xué)習(xí)中的數(shù)學(xué)(4)-線性判別分析(LDA), 主成分分析(PCA)