- 機(jī)器視覺(jué)深度學(xué)習(xí)檢測(cè) 內(nèi)容精選 換一換
-
AI技術(shù)領(lǐng)域課程--機(jī)器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對(duì)抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--機(jī)器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對(duì)抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò)來(lái)自:專(zhuān)題華為云計(jì)算 云知識(shí) 華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-硬盤(pán)異常檢測(cè) 華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-硬盤(pán)異常檢測(cè) 時(shí)間:2021-01-05 11:41:15 華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-硬盤(pán)異常檢測(cè)基于網(wǎng)絡(luò)人工智能(NAIE)訓(xùn)練平臺(tái)的硬盤(pán)異常預(yù)測(cè)程序,通過(guò)機(jī)器學(xué)習(xí)構(gòu)建硬盤(pán)故障預(yù)測(cè)模型,對(duì)數(shù)據(jù)來(lái)自:百科
- 機(jī)器視覺(jué)深度學(xué)習(xí)檢測(cè) 相關(guān)內(nèi)容
-
華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-KPI異常檢測(cè) 華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-KPI異常檢測(cè) 時(shí)間:2021-01-05 11:40:25 華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-KPI異常檢測(cè)提供某運(yùn)營(yíng)商的KPI真實(shí)數(shù)據(jù),參賽選手需要根據(jù)歷史40天異常標(biāo)簽數(shù)據(jù)(訓(xùn)練數(shù)據(jù)集),訓(xùn)練模型并檢測(cè)后續(xù)17天內(nèi)各KPI(測(cè)試數(shù)據(jù)集)中的異常。來(lái)自:百科商品介紹 針對(duì)出現(xiàn)在視頻畫(huà)面中特定區(qū)域的人員進(jìn)行檢測(cè),當(dāng)畫(huà)面中人數(shù)超過(guò)一定閾值,則判定為人員匯聚,目前算法設(shè)定的閾值為5人(包含5人)。 算法采用機(jī)器視覺(jué)圖像感知技術(shù),通過(guò)計(jì)算機(jī)視覺(jué)技術(shù)及深度學(xué)習(xí)技術(shù),對(duì)人員的精確檢測(cè)、跟蹤,實(shí)現(xiàn)對(duì)人體檢測(cè)分析檢測(cè),智能分析精確區(qū)分人和干擾物體,如其他移來(lái)自:云商店
- 機(jī)器視覺(jué)深度學(xué)習(xí)檢測(cè) 更多內(nèi)容
-
手寫(xiě)數(shù)字識(shí)別模型。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí)使學(xué)員掌握深度學(xué)習(xí)平臺(tái)應(yīng)用及入門(mén)深度學(xué)習(xí)。 課程大綱 第1節(jié) 導(dǎo)讀&往期內(nèi)容回顧 第2節(jié) 深度學(xué)習(xí)平臺(tái)介紹 第3節(jié) 深度學(xué)習(xí)入門(mén)示例介紹 第4節(jié) 神經(jīng)網(wǎng)絡(luò)構(gòu)建多分類(lèi)模型 第5節(jié) 華為云深度學(xué)習(xí)平臺(tái)實(shí)操演練 華為云 面向未來(lái)的智能世界,來(lái)自:百科
謝老師,華為云EI技術(shù)專(zhuān)家,10年人工智能/計(jì)算機(jī)視覺(jué)研究經(jīng)驗(yàn),在國(guó)際頂級(jí)會(huì)議和期刊上發(fā)表超過(guò)50篇論文,谷歌引用數(shù)1700,擅長(zhǎng)大規(guī)模視覺(jué)識(shí)別、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了典型的現(xiàn)代物體檢測(cè)子包含兩階段檢測(cè)子:RCNN, Fast RCNN, Faster RCNN, 以及單階段檢測(cè)子: YOLO來(lái)自:百科
圖像識(shí)別 ( Image Recognition ),基于深度學(xué)習(xí)和大數(shù)據(jù),利用計(jì)算機(jī)對(duì)圖像進(jìn)行分析和理解,以識(shí)別各種不同模式的目標(biāo)和對(duì)象的技術(shù)?;?span style='color:#C7000B'>深度學(xué)習(xí)技術(shù),可準(zhǔn)確識(shí)別圖像中的視覺(jué)內(nèi)容,提供多種物體、場(chǎng)景和概念標(biāo)簽,具備目標(biāo)檢測(cè)和屬性識(shí)別等能力,幫助客戶準(zhǔn)確識(shí)別和理解圖像內(nèi)容,打造智能化業(yè)務(wù)系統(tǒng),提升業(yè)務(wù)效率。來(lái)自:百科
本課程包含了數(shù)字圖像基本原理,以及使用傳統(tǒng)方法和深度學(xué)習(xí)方法完成計(jì)算機(jī)視覺(jué)任務(wù)的方法以及應(yīng)用場(chǎng)景。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、掌握數(shù)字圖像的基礎(chǔ)知識(shí)和變換方法。 2、掌握?qǐng)D像分類(lèi)技術(shù)的原理和應(yīng)用場(chǎng)景。 3、掌握目標(biāo)檢測(cè)技術(shù)的原理和應(yīng)用場(chǎng)景。 4、掌握?qǐng)D像分割技術(shù)的原理和應(yīng)用場(chǎng)景。來(lái)自:百科
02:18 網(wǎng)站安全檢測(cè) 域名認(rèn)證的操作流程 網(wǎng)站安全檢測(cè) 創(chuàng)建網(wǎng)站掃描任務(wù) 02:27 網(wǎng)站安全檢測(cè) 創(chuàng)建網(wǎng)站掃描任務(wù) 網(wǎng)站安全檢測(cè) 主機(jī)掃描的操作流程 04:54 網(wǎng)站安全檢測(cè) 主機(jī)掃描的操作流程 網(wǎng)站安全檢測(cè) 查看漏洞檢測(cè)日志 02:07 網(wǎng)站安全檢測(cè) 查看漏洞檢測(cè)日志 網(wǎng)站安全檢測(cè)來(lái)自:專(zhuān)題
華為云計(jì)算 云知識(shí) 工業(yè)視覺(jué)的優(yōu)勢(shì) 工業(yè)視覺(jué)的優(yōu)勢(shì) 時(shí)間:2020-08-20 09:23:53 傳統(tǒng)的工業(yè)制造主要采用人工肉眼檢測(cè)產(chǎn)品的缺陷,不僅使得檢測(cè)產(chǎn)品速度慢、效率低下,而且在檢測(cè)過(guò)程中容易出錯(cuò),導(dǎo)致誤檢、漏檢等問(wèn)題?;?span style='color:#C7000B'>機(jī)器視覺(jué)的質(zhì)檢方案,通過(guò)云端建模分析與邊緣實(shí)時(shí)決策來(lái)自:百科
據(jù)集作為深度學(xué)習(xí)和機(jī)器學(xué)習(xí)的輸入,對(duì)AI開(kāi)發(fā)有至關(guān)重要的意義。 ModelArts 數(shù)據(jù)管理 提供了一套高效便捷的管理和標(biāo)注數(shù)據(jù)集框架。不僅支持圖片、文本、語(yǔ)音、視頻等多種數(shù)據(jù)類(lèi)型,涵蓋圖像分類(lèi)、目標(biāo)檢測(cè)、音頻分割、文本分類(lèi)等多個(gè)標(biāo)注場(chǎng)景,可適用于各種AI項(xiàng)目,如計(jì)算機(jī)視覺(jué)、自然語(yǔ)言來(lái)自:百科
NVR800人員路徑“搜集”,原來(lái)如此簡(jiǎn)單 云市場(chǎng)商品:NVR800應(yīng)用軟件;機(jī)器視覺(jué) 華為好望商城 NVR800人員檢索功能不僅支持檢索人員出現(xiàn)時(shí)間、出現(xiàn)次數(shù),現(xiàn)在還支持人員運(yùn)動(dòng)路徑追蹤,根據(jù)人員出現(xiàn)時(shí)間,呈現(xiàn)運(yùn)動(dòng)路徑圖。接下來(lái),我們就來(lái)學(xué)習(xí)下配置操作。 檢索人員路徑 1. 單擊跟蹤圖標(biāo),進(jìn)入人員路徑跟蹤頁(yè)面。來(lái)自:云商店
0系列課程。計(jì)算機(jī)視覺(jué)是深度學(xué)習(xí)領(lǐng)域最熱門(mén)的研究領(lǐng)域之一,它衍生出了一大批快速發(fā)展且具有實(shí)際作用的應(yīng)用,包括 人臉識(shí)別 、圖像檢測(cè)、目標(biāo)監(jiān)測(cè)以及智能駕駛等。這一切本質(zhì)都是對(duì)圖像數(shù)據(jù)進(jìn)行處理,本課程就圖像處理理論及相應(yīng)技術(shù)做了介紹,包括傳統(tǒng)特征提取算法和卷積神經(jīng)網(wǎng)絡(luò),學(xué)習(xí)時(shí)注意兩者的區(qū)別。來(lái)自:百科
展、高可用的端到端解決方案。 工業(yè)視覺(jué) 傳統(tǒng)的工業(yè)制造主要采用人工肉眼檢測(cè)產(chǎn)品的缺陷,不僅使得檢測(cè)產(chǎn)品速度慢、效率低下,而且在檢測(cè)過(guò)程中容易出錯(cuò),導(dǎo)致誤檢、漏檢等問(wèn)題。基于機(jī)器視覺(jué)的質(zhì)檢方案,通過(guò)云端建模分析與邊緣實(shí)時(shí)決策的結(jié)合,實(shí)現(xiàn)自動(dòng)視覺(jué)檢測(cè),提升產(chǎn)品質(zhì)量。 CDN 邊緣站點(diǎn)管理來(lái)自:百科
術(shù),包括優(yōu)化的機(jī)器學(xué)習(xí)算法,從而實(shí)現(xiàn)Spark性能倍級(jí)提升。 內(nèi)容大綱: 1. 大數(shù)據(jù)機(jī)器學(xué)習(xí)算法發(fā)展歷程; 2. 機(jī)器學(xué)習(xí)算法優(yōu)化的技術(shù)挑戰(zhàn); 3. 鯤鵬BoostKit機(jī)器學(xué)習(xí)算法原理創(chuàng)新; 4. 面向鯤鵬的算法親和優(yōu)化實(shí)踐; 5. 鯤鵬BoostKit機(jī)器學(xué)習(xí)算法實(shí)踐。 聽(tīng)眾收益:來(lái)自:百科
- 深度學(xué)習(xí)在計(jì)算機(jī)視覺(jué)中的應(yīng)用:對(duì)象檢測(cè)
- 【人工智能】python深度學(xué)習(xí) 視覺(jué)實(shí)現(xiàn)口罩檢測(cè)實(shí)時(shí)語(yǔ)音報(bào)警系統(tǒng)
- 《深度學(xué)習(xí)與圖像識(shí)別:原理與實(shí)踐》—1.1.2 機(jī)器視覺(jué)
- 機(jī)器學(xué)習(xí)——深度學(xué)習(xí)(Deep Learning)
- 機(jī)器學(xué)習(xí)之深度學(xué)習(xí)簡(jiǎn)介
- 深度學(xué)習(xí)修煉(一)——從機(jī)器學(xué)習(xí)轉(zhuǎn)向深度學(xué)習(xí)
- 機(jī)器學(xué)習(xí)(八):深度學(xué)習(xí)簡(jiǎn)介
- MATLAB中的機(jī)器視覺(jué)應(yīng)用目標(biāo)檢測(cè)與識(shí)別
- GitHub上AI崗位面試筆記(機(jī)器學(xué)習(xí)算法/深度學(xué)習(xí)/ NLP/計(jì)算機(jī)視覺(jué))
- 機(jī)器視覺(jué)在質(zhì)量檢測(cè)與缺陷識(shí)別中的應(yīng)用