- 半監(jiān)督機(jī)器學(xué)習(xí) 內(nèi)容精選 換一換
-
需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類 3. 機(jī)器學(xué)習(xí)的整體流程來(lái)自:百科第7章 有監(jiān)督學(xué)習(xí)-決策樹 第8章 有監(jiān)督學(xué)習(xí)-集成算法概述 第9章 有監(jiān)督學(xué)習(xí)-Bagging 第10章 有監(jiān)督學(xué)習(xí)-隨機(jī)森林 第11章 有監(jiān)督學(xué)習(xí)-Boosting 第12章 有監(jiān)督學(xué)習(xí)-Adaboost 第13章 有監(jiān)督學(xué)習(xí)-GBDT 第14章 有監(jiān)督學(xué)習(xí)-Xgboost 第15章來(lái)自:百科
- 半監(jiān)督機(jī)器學(xué)習(xí) 相關(guān)內(nèi)容
-
術(shù),包括優(yōu)化的機(jī)器學(xué)習(xí)算法,從而實(shí)現(xiàn)Spark性能倍級(jí)提升。 內(nèi)容大綱: 1. 大數(shù)據(jù)機(jī)器學(xué)習(xí)算法發(fā)展歷程; 2. 機(jī)器學(xué)習(xí)算法優(yōu)化的技術(shù)挑戰(zhàn); 3. 鯤鵬BoostKit機(jī)器學(xué)習(xí)算法原理創(chuàng)新; 4. 面向鯤鵬的算法親和優(yōu)化實(shí)踐; 5. 鯤鵬BoostKit機(jī)器學(xué)習(xí)算法實(shí)踐。 聽眾收益:來(lái)自:百科第1節(jié) 人工智能發(fā)展及應(yīng)用 第2節(jié) 人工智能與機(jī)器學(xué)習(xí) 第3節(jié) 監(jiān)督學(xué)習(xí)與非監(jiān)督學(xué)習(xí)實(shí)例講解 第4節(jié) 如何快速掌握AI應(yīng)用的能力 AI開發(fā)平臺(tái) ModelArts ModelArts是面向開發(fā)者的一站式AI開發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Tr來(lái)自:百科
- 半監(jiān)督機(jī)器學(xué)習(xí) 更多內(nèi)容
-
15:54:18 機(jī)器學(xué)習(xí)常見的分類有3種: 監(jiān)督學(xué)習(xí):利用一組已知類別的樣本調(diào)整分類器的參數(shù),使其達(dá)到所要求性能的過程,也稱為監(jiān)督訓(xùn)練或有教師學(xué)習(xí)。常見的有回歸和分類。 非監(jiān)督學(xué)習(xí):在未加標(biāo)簽的數(shù)據(jù)中,試圖找到隱藏的結(jié)構(gòu)。常見的有聚類。 強(qiáng)化學(xué)習(xí):智能系統(tǒng)從環(huán)境到行為映射的學(xué)習(xí),以使獎(jiǎng)勵(lì)信號(hào)(強(qiáng)化信號(hào))函數(shù)值最大。來(lái)自:百科
從MindSpore手寫數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 從MindSpore手寫數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 時(shí)間:2020-11-23 16:08:48 深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)分支之一,應(yīng)用日益廣泛。 語(yǔ)音識(shí)別 、自動(dòng)機(jī)器翻譯、即時(shí)視覺翻譯、刷臉支付、人臉考勤……不知不覺,深度學(xué)習(xí)已經(jīng)滲入到我們生活中的每個(gè)來(lái)自:百科
庫(kù),通常是對(duì)象塊或文件。 數(shù)據(jù)湖 通常是對(duì)所有企業(yè)數(shù)據(jù)進(jìn)行統(tǒng)一存儲(chǔ),包含原始數(shù)據(jù)和用于報(bào)告、可視化、分析和機(jī)器學(xué)習(xí)等各種任務(wù)的轉(zhuǎn)換數(shù)據(jù)。湖中的數(shù)據(jù)包括來(lái)自關(guān)系數(shù)據(jù)庫(kù)的結(jié)構(gòu)化數(shù)據(jù)、半結(jié)構(gòu)化數(shù)據(jù)、非結(jié)構(gòu)化數(shù)據(jù)和二進(jìn)制數(shù)據(jù)從而形成一個(gè)集中式數(shù)據(jù)存儲(chǔ)容納所有形式的數(shù)據(jù)。 來(lái)自華為全球產(chǎn)業(yè)展望來(lái)自:百科
隊(duì)分享了基于華為機(jī)器視覺產(chǎn)品(軟件定義攝像機(jī)、智能視頻存儲(chǔ)、華為好望商城、華為好望云服務(wù))結(jié)合各自賽隊(duì)優(yōu)秀算法和應(yīng)用的聯(lián)合方案及優(yōu)秀實(shí)踐。 華為機(jī)器視覺總裁 段愛國(guó) 致辭 經(jīng)過激烈的角逐,最終大賽決出1個(gè)金獎(jiǎng)、2個(gè)銀獎(jiǎng)、8個(gè)優(yōu)勝獎(jiǎng),華為機(jī)器視覺總裁段愛國(guó)、華為機(jī)器視覺負(fù)責(zé)產(chǎn)業(yè)發(fā)展來(lái)自:云商店
AI開發(fā)平臺(tái)產(chǎn)品為用戶提供一站式機(jī)器/深度學(xué)習(xí)解決方案。支持?jǐn)?shù)據(jù)預(yù)處理、模型構(gòu)建、模型訓(xùn)練、模型評(píng)估、模型服務(wù)的全流程開發(fā)及部署支持,提供多樣化建模方式,幫助用戶快速創(chuàng)建和部署模型 AI開發(fā)平臺(tái)產(chǎn)品為用戶提供一站式機(jī)器/深度學(xué)習(xí)解決方案。支持?jǐn)?shù)據(jù)預(yù)處理、模型構(gòu)建、模型訓(xùn)練、模型評(píng)估、模型服務(wù)的全流程開來(lái)自:專題
- 機(jī)器學(xué)習(xí)中的有監(jiān)督學(xué)習(xí),無(wú)監(jiān)督學(xué)習(xí),半監(jiān)督學(xué)習(xí)
- 【機(jī)器學(xué)習(xí)】——簡(jiǎn)述有監(jiān)督學(xué)習(xí)、半監(jiān)督學(xué)習(xí)、無(wú)監(jiān)督學(xué)習(xí)、弱監(jiān)督學(xué)習(xí)
- 《Spark機(jī)器學(xué)習(xí)進(jìn)階實(shí)戰(zhàn)》——1.3.3 半監(jiān)督學(xué)習(xí)
- 半監(jiān)督學(xué)習(xí)
- AI人工智能機(jī)器學(xué)習(xí)的類型:監(jiān)督學(xué)習(xí)、無(wú)監(jiān)督學(xué)習(xí)、半監(jiān)督學(xué)習(xí)、增強(qiáng)學(xué)習(xí)和深度學(xué)習(xí)
- 最新半監(jiān)督學(xué)習(xí)總結(jié)
- 【機(jī)器學(xué)習(xí)】(4):監(jiān)督式學(xué)習(xí)
- 主動(dòng)學(xué)習(xí)和被動(dòng)學(xué)習(xí)(監(jiān)督學(xué)習(xí))、半監(jiān)督學(xué)習(xí)的關(guān)系
- 機(jī)器學(xué)習(xí)中的監(jiān)督學(xué)習(xí)、無(wú)監(jiān)督學(xué)習(xí)、半監(jiān)督學(xué)習(xí)和強(qiáng)化學(xué)習(xí),這四種學(xué)習(xí)方式到底有啥區(qū)別?
- 淺談數(shù)據(jù)挖掘中的監(jiān)督學(xué)習(xí),半監(jiān)督學(xué)習(xí)和無(wú)監(jiān)督學(xué)習(xí)
- 大模型開發(fā)基本概念
- 適用于人工智能與機(jī)器學(xué)習(xí)場(chǎng)景的合規(guī)實(shí)踐
- 創(chuàng)建智能標(biāo)注作業(yè)
- 增量預(yù)訓(xùn)練典型問題
- CREATE MODEL
- CREATE MODEL
- 無(wú)監(jiān)督領(lǐng)域知識(shí)數(shù)據(jù)量無(wú)法支持增量預(yù)訓(xùn)練,如何進(jìn)行模型學(xué)習(xí)
- 學(xué)習(xí)項(xiàng)目
- 標(biāo)簽傳播算法(Label Propagation)
- 標(biāo)簽傳播算法(label_propagation)