- tensorflow 圖像分類 卷積 內(nèi)容精選 換一換
-
10:15:15 視頻監(jiān)控 視頻檢測(cè) 人工智能 機(jī)器視覺 商品介紹 電瓶車起火事件時(shí)有發(fā)生,為保證樓宇公共安全,禁止電瓶車進(jìn)入,該產(chǎn)品采用AI智能算法,利用卷積神經(jīng)網(wǎng)絡(luò)技術(shù),通過深度學(xué)習(xí)實(shí)現(xiàn)電瓶車檢測(cè)功能。 電梯內(nèi)電瓶車檢測(cè)商品介紹: 應(yīng)用場(chǎng)景: 隨著電瓶車越來越受歡迎,電瓶車起火事件也時(shí)來自:云商店能力。同時(shí),該產(chǎn)品兼容底層X86/ARM,華為NPU/英偉達(dá)GPU等不同架構(gòu)的服務(wù)器,并且兼容包括華為MindSpore、TensorFlow和PyTorch等主流深度學(xué)習(xí)框架。 Apulis AI Studio配套人工服務(wù)(H CS 版)的功能非常豐富。它包括 數(shù)據(jù)管理 平臺(tái)、人工智能來自:專題
- tensorflow 圖像分類 卷積 相關(guān)內(nèi)容
-
遏制風(fēng)險(xiǎn)與釋放審核人力,提升效率。 產(chǎn)品優(yōu)勢(shì): 1. 多模態(tài)審核:支持同時(shí)對(duì)視頻字幕、聲音與畫面多維度智能核查; 2. 準(zhǔn)確率高:采用深度卷積神經(jīng)網(wǎng)絡(luò)與海量訓(xùn)練數(shù)據(jù),模型識(shí)別準(zhǔn)確率高; 3. 識(shí)別速度快:實(shí)時(shí)對(duì)視頻進(jìn)行審核,快速識(shí)別視頻違規(guī)項(xiàng)。 華為云 面向未來的智能世界,數(shù)字化來自:百科可以全面了解模型對(duì)不同數(shù)據(jù)特征的適應(yīng)性,使得模型調(diào)優(yōu)可以做到有的放矢。 當(dāng)前模型評(píng)估功能覆蓋圖像分類、物體檢測(cè)和圖像語義分割三大場(chǎng)景,快來看看如何使用模型評(píng)估功能吧~ 圖像分類 圖像分類評(píng)估指標(biāo)說明 指標(biāo)名稱 子參數(shù) 說明 精度評(píng)估 圖像類別分布 不同類別圖片數(shù)量的統(tǒng)計(jì)值。 混淆矩陣來自:百科
- tensorflow 圖像分類 卷積 更多內(nèi)容
-
表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來解釋說明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺、 語音識(shí)別 、自然語言處理等其他領(lǐng)域。 華為云 面向未來的智來自:百科
實(shí)驗(yàn)配置了AI1開發(fā)環(huán)境和典型樣例指導(dǎo)書,供您選擇感興趣的案例完成應(yīng)用開發(fā)。 初級(jí) 使用昇騰AI 彈性云服務(wù)器 實(shí)現(xiàn)圖像分類應(yīng)用 實(shí)驗(yàn)指導(dǎo)用戶完成基于華為昇騰彈性云服務(wù)器的圖像分類應(yīng)用。 初級(jí) 通過鯤鵬開發(fā)套件實(shí)現(xiàn)Java代碼遷移 本實(shí)驗(yàn)指導(dǎo)用戶使用鯤鵬分析掃描工具識(shí)別java軟件中的依來自:專題
視頻封面:基于互聯(lián)網(wǎng)在線視頻的內(nèi)容理解,快速輸出具有代表性和吸引力的精彩封面 視頻摘要:基于視頻的內(nèi)容相關(guān)度、精彩畫面,提取場(chǎng)景片段制作視頻摘要 產(chǎn)品優(yōu)勢(shì) 準(zhǔn)確拆分,采用深度卷積網(wǎng)絡(luò)與海量視頻數(shù)據(jù)訓(xùn)練、分析,精確拆分、提取不同主題的片段。 準(zhǔn)確提取關(guān)鍵幀,使用光流等技術(shù),結(jié)合時(shí)域特性,基于內(nèi)容理解和結(jié)構(gòu)分析,準(zhǔn)確提取關(guān)鍵幀。來自:百科
神經(jīng)網(wǎng)絡(luò)基礎(chǔ)概念 第2章 數(shù)據(jù)集處理 第3章 網(wǎng)絡(luò)構(gòu)建 第4章 正則化 第5章 優(yōu)化器 第6章 初始化 第7章 參數(shù)調(diào)節(jié) 第8章 深度信念網(wǎng)絡(luò) 第9章 卷積神經(jīng)網(wǎng)絡(luò) 第10章 循環(huán)神經(jīng)網(wǎng)絡(luò) 華為云 面向未來的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。來自:百科
在線實(shí)驗(yàn) 30分鐘輕松搭建網(wǎng)站應(yīng)用 MySQL本地 數(shù)據(jù)庫遷移 使用ModelArts實(shí)現(xiàn)花卉圖像分類 30分鐘輕松搭建網(wǎng)站應(yīng)用 MySQL本地?cái)?shù)據(jù)庫遷移 使用ModelArts實(shí)現(xiàn)花卉圖像分類 微認(rèn)證 03 一站式在線學(xué)練考,零基礎(chǔ)學(xué)習(xí)前沿技術(shù),考取權(quán)威證書 一站式在線學(xué)練考,零基礎(chǔ)學(xué)習(xí)前沿技術(shù),考取權(quán)威證書來自:專題
了解語音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 通過本實(shí)驗(yàn)將了解如何使用Keras和Tensorflow構(gòu)建DFCNN的語音識(shí)別神經(jīng)網(wǎng)絡(luò),并且熟悉整個(gè)處理流程,包括數(shù)據(jù)預(yù)處理、模型訓(xùn)練、模型保存和模型預(yù)測(cè)等環(huán)節(jié)。 實(shí)驗(yàn)摘要 實(shí)驗(yàn)準(zhǔn)備:登錄華為云賬號(hào)來自:百科
- tensorflow2實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)
- python 反卷積(DeConv) tensorflow反卷積(DeConv)(實(shí)現(xiàn)原理+手寫)
- 基于Tensorflow的Quick Draw圖像分類
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門到精通》——1.7 本書的內(nèi)容結(jié)構(gòu)和案例數(shù)據(jù)
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門到精通》
- 圖像分類算法:從卷積神經(jīng)網(wǎng)絡(luò)到遷移學(xué)習(xí)
- TensorFlow2.0以上版本的圖像分類
- 使用TensorFlow構(gòu)建深度學(xué)習(xí)模型:圖像分類與目標(biāo)檢測(cè)
- TensorFlow神經(jīng)網(wǎng)絡(luò)搭建、機(jī)器學(xué)習(xí)特征工程與計(jì)算機(jī)視覺圖像分類算法
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 典型卷積神經(jīng)網(wǎng)絡(luò)