- tensorflow圖像分類 內(nèi)容精選 換一換
-
云知識(shí) 使用ModelArts實(shí)現(xiàn)花卉圖像分類 使用ModelArts實(shí)現(xiàn)花卉圖像分類 時(shí)間:2020-12-02 11:24:42 本實(shí)驗(yàn)指導(dǎo)用戶在華為云ModelArts平臺(tái)使用flowers數(shù)據(jù)集對(duì)預(yù)置的模型進(jìn)行重訓(xùn)練,快速構(gòu)建花卉圖像分類應(yīng)用。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 使用戶掌來自:百科'\"<>=,不超過36個(gè)字符。常見的模型算法有image_classification(圖像分類)、object_detection(物體檢測(cè))、predict_analysis(預(yù)測(cè)分析)等。 model_type:模型AI引擎,表明模型使用的計(jì)算框架,支持常用AI框架和“Image”。 runt來自:專題
- tensorflow圖像分類 相關(guān)內(nèi)容
-
要關(guān)心底層的技術(shù)。同時(shí),ModelArts支持Tensorflow、MXNet等主流開源的AI開發(fā)框架,也支持開發(fā)者使用自研的算法框架,匹配您的使用習(xí)慣。 ModelArts的理念就是讓AI開發(fā)變得更簡單、更方便。 面向不同經(jīng)驗(yàn)的AI開發(fā)者,提供便捷易用的使用流程。例如,面向業(yè)務(wù)來自:百科華為云計(jì)算 云知識(shí) 使用昇騰AI 彈性云服務(wù)器 實(shí)現(xiàn)圖像分類應(yīng)用 使用昇騰AI彈性云服務(wù)器實(shí)現(xiàn)圖像分類應(yīng)用 時(shí)間:2020-12-01 15:59:46 實(shí)驗(yàn)指導(dǎo)用戶完成基于華為昇騰彈性云服務(wù)器的圖像分類應(yīng)用。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 1.了解華為昇騰全棧開發(fā)工具M(jìn)ind Studio;來自:百科
- tensorflow圖像分類 更多內(nèi)容
-
ECC顯存,帶寬192GB/s GPU內(nèi)置硬件視頻編解碼引擎,能夠同時(shí)進(jìn)行35路高清視頻解碼與實(shí)時(shí)推理 常規(guī)支持軟件列表 Pi1實(shí)例主要用于GPU推理計(jì)算場景,例如圖片識(shí)別、 語音識(shí)別 等場景。 常用的軟件支持列表如下: Tensorflow、Caffe、PyTorch、MXNet等深度學(xué)習(xí)框架 推理加速型Pi2來自:百科ModelArts 數(shù)據(jù)管理 是什么 ModelArts數(shù)據(jù)管理提供了一套高效便捷的管理和標(biāo)注數(shù)據(jù)框架。不僅支持圖片、文本、語音、視頻等多種數(shù)據(jù)類型,涵蓋圖像分類、目標(biāo)檢測(cè)、音頻分割、文本分類等多個(gè)標(biāo)注場景,可適用于各種AI項(xiàng)目,如計(jì)算機(jī)視覺、自然語言處理、音視頻分析等;數(shù)據(jù)管理同時(shí)提供數(shù)據(jù)篩選、來自:專題AI基礎(chǔ)課程--常用框架工具 AI基礎(chǔ)課程--概覽 AI基礎(chǔ)課程--Python編程知識(shí) AI基礎(chǔ)課程--數(shù)學(xué)基礎(chǔ)知識(shí) AI基礎(chǔ)課程--常用框架工具 技術(shù)領(lǐng)域 技術(shù)領(lǐng)域 AI技術(shù)領(lǐng)域課程--機(jī)器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對(duì)抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò)來自:專題能力。同時(shí),該產(chǎn)品兼容底層X86/ARM,華為NPU/英偉達(dá)GPU等不同架構(gòu)的服務(wù)器,并且兼容包括華為MindSpore、TensorFlow和PyTorch等主流深度學(xué)習(xí)框架。 Apulis AI Studio配套人工服務(wù)(H CS 版)的功能非常豐富。它包括數(shù)據(jù)管理平臺(tái)、人工智能來自:專題AI基礎(chǔ)課程--常用框架工具 AI基礎(chǔ)課程--概覽 AI基礎(chǔ)課程--Python編程知識(shí) AI基礎(chǔ)課程--數(shù)學(xué)基礎(chǔ)知識(shí) AI基礎(chǔ)課程--常用框架工具 技術(shù)領(lǐng)域 技術(shù)領(lǐng)域 AI技術(shù)領(lǐng)域課程--機(jī)器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對(duì)抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò)來自:專題
- 基于Tensorflow的Quick Draw圖像分類
- TensorFlow2.0以上版本的圖像分類
- 使用TensorFlow構(gòu)建深度學(xué)習(xí)模型:圖像分類與目標(biāo)檢測(cè)
- 【圖像分類】手撕ResNet——復(fù)現(xiàn)ResNet(Keras,Tensorflow 2.x)
- efficientnet實(shí)戰(zhàn):tensorflow2.0以上版本,使用efficientnet實(shí)現(xiàn)圖像分類任務(wù)
- Tensorflow |(1)初識(shí)Tensorflow
- ResNet實(shí)戰(zhàn):tensorflow2.0以上版本,使用ResNet50實(shí)現(xiàn)圖像分類任務(wù)
- DenseNet實(shí)戰(zhàn):tensorflow2.X版本,DenseNet121圖像分類任務(wù)(小數(shù)據(jù)集)
- DenseNet實(shí)戰(zhàn):tensorflow2.X版本,DenseNet121圖像分類任務(wù)(大數(shù)據(jù)集)
- 《智能系統(tǒng)與技術(shù)叢書 生成對(duì)抗網(wǎng)絡(luò)入門指南》—2.2.3Tensorflow實(shí)例:圖像分類