- 深度學(xué)習(xí)相似度檢測(cè)算法 內(nèi)容精選 換一換
-
華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的 語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí) 深度學(xué)習(xí) 時(shí)間:2020-11-23 16:30:56 深度學(xué)習(xí)( Deep Learning,DL)是機(jī)器學(xué)習(xí)的一種,機(jī)器學(xué)習(xí)是實(shí)現(xiàn)人工智能的必由之路。深度學(xué)習(xí)的概念源于人工神經(jīng)網(wǎng)絡(luò)的研究,包含多個(gè)隱藏層的多層感知器就是深度學(xué)習(xí)結(jié)構(gòu)。深度學(xué)習(xí)通過(guò)組合低層特來(lái)自:百科
- 深度學(xué)習(xí)相似度檢測(cè)算法 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見(jiàn)的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科成。輸入層用于輸入數(shù)據(jù);卷積層通過(guò)卷積運(yùn)算對(duì)輸入進(jìn)行局部特征提取;池化層通過(guò)下采樣的方式降低特征圖的分辨率,從而降低輸出對(duì)位置和形變的敏感度,同時(shí)還可降低網(wǎng)絡(luò)中的參數(shù)和計(jì)算量;全連接層將局部特征通過(guò)權(quán)值矩陣組裝成完整的圖像,完成特征空間到真實(shí)類別空間的映射,最終的圖像分類便是由全來(lái)自:百科
- 深度學(xué)習(xí)相似度檢測(cè)算法 更多內(nèi)容
-
值。 課程簡(jiǎn)介 為了解決真實(shí)世界中的問(wèn)題,我們的深度學(xué)習(xí)算法需要巨量的數(shù)據(jù),同時(shí)也需要機(jī)器擁有處理龐大數(shù)據(jù)的能力,在現(xiàn)實(shí)世界中部署神經(jīng)網(wǎng)絡(luò)需要平衡效率和能耗以及成本的關(guān)系。本課程介紹了能耗高效的深度學(xué)習(xí)。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員了解如下知識(shí): 1、高效的結(jié)構(gòu)設(shè)計(jì)。 2、用NAS搜索輕量級(jí)網(wǎng)絡(luò)。來(lái)自:百科
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科
、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科
華為云計(jì)算 云知識(shí) 華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-硬盤異常檢測(cè) 華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-硬盤異常檢測(cè) 時(shí)間:2021-01-05 11:41:15 華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-硬盤異常檢測(cè)基于網(wǎng)絡(luò)人工智能(NAIE)訓(xùn)練平臺(tái)的硬盤異常預(yù)測(cè)程序,通過(guò)機(jī)器學(xué)習(xí)構(gòu)建硬盤故障預(yù)測(cè)模型,對(duì)數(shù)據(jù)來(lái)自:百科
華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-KPI異常檢測(cè) 華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-KPI異常檢測(cè) 時(shí)間:2021-01-05 11:40:25 華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-KPI異常檢測(cè)提供某運(yùn)營(yíng)商的KPI真實(shí)數(shù)據(jù),參賽選手需要根據(jù)歷史40天異常標(biāo)簽數(shù)據(jù)(訓(xùn)練數(shù)據(jù)集),訓(xùn)練模型并檢測(cè)后續(xù)17天內(nèi)各KPI(測(cè)試數(shù)據(jù)集)中的異常。來(lái)自:百科
1秒。 清晰度檢測(cè) 清晰度檢測(cè)有以下應(yīng)用場(chǎng)景: 企業(yè)表單驗(yàn)證 基于圖像清晰度檢測(cè)技術(shù),對(duì)于企業(yè)上傳的數(shù)據(jù)表單,自動(dòng)對(duì)圖像的清晰度進(jìn)行判斷并量化,減少二次上傳,降低人工成本。 場(chǎng)景優(yōu)勢(shì)如下: 準(zhǔn)確率高:準(zhǔn)確檢測(cè)圖像清晰度,并進(jìn)行量化。 提升企業(yè)效率:對(duì)模糊的數(shù)據(jù)表單自動(dòng)檢測(cè),減少人工復(fù)查,提升工作效率。來(lái)自:百科
1秒。 清晰度檢測(cè) 清晰度檢測(cè)有以下應(yīng)用場(chǎng)景: 企業(yè)表單驗(yàn)證 基于圖像清晰度檢測(cè)技術(shù),對(duì)于企業(yè)上傳的數(shù)據(jù)表單,自動(dòng)對(duì)圖像的清晰度進(jìn)行判斷并量化,減少二次上傳,降低人工成本。 場(chǎng)景優(yōu)勢(shì)如下: 準(zhǔn)確率高:準(zhǔn)確檢測(cè)圖像清晰度,并進(jìn)行量化。 提升企業(yè)效率:對(duì)模糊的數(shù)據(jù)表單自動(dòng)檢測(cè),減少人工復(fù)查,提升工作效率。來(lái)自:百科
文字轉(zhuǎn)換成語(yǔ)音 適用于哪些場(chǎng)景 智能問(wèn)答系統(tǒng) 通過(guò)中文分詞、短文本相似度、命名實(shí)體識(shí)別等相關(guān)技術(shù)計(jì)算兩個(gè)問(wèn)題對(duì)的相似度,可解決問(wèn)答、對(duì)話、語(yǔ)料挖掘、知識(shí)庫(kù)構(gòu)建等問(wèn)題。 通過(guò)中文分詞、短文本相似度、命名實(shí)體識(shí)別等相關(guān)技術(shù)計(jì)算兩個(gè)問(wèn)題對(duì)的相似度,可解決問(wèn)答、對(duì)話、語(yǔ)料挖掘、知識(shí)庫(kù)構(gòu)建等問(wèn)題。 文本分析來(lái)自:專題
<<能見(jiàn)度檢測(cè)算法>> AI開(kāi)發(fā)平臺(tái) ModelArts ModelArts是面向開(kāi)發(fā)者的一站式AI開(kāi)發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Training、自動(dòng)化模型生成,及端-邊-云模型按需部署能力,幫助用戶快速創(chuàng)建和部署模型,管理全周期AI工作流。來(lái)自:云商店
確位置。算法優(yōu)化是指對(duì)算法的有關(guān)性能進(jìn)行優(yōu)化,如時(shí)間復(fù)雜度、空間復(fù)雜度、正確性、健壯性。大數(shù)據(jù)時(shí)代到來(lái),算法要處理數(shù)據(jù)的數(shù)量級(jí)也越來(lái)越大以及處理問(wèn)題的場(chǎng)景千變?nèi)f化。 為了增強(qiáng)算法的處理問(wèn)題的能力,對(duì)算法進(jìn)行優(yōu)化是必不可少的。算法優(yōu)化一般是對(duì)算法結(jié)構(gòu)和收斂進(jìn)行優(yōu)化。 本算法雖然包括來(lái)自:云商店
包括優(yōu)化的機(jī)器學(xué)習(xí)算法,從而實(shí)現(xiàn)Spark性能倍級(jí)提升。 內(nèi)容大綱: 1. 大數(shù)據(jù)機(jī)器學(xué)習(xí)算法發(fā)展歷程; 2. 機(jī)器學(xué)習(xí)算法優(yōu)化的技術(shù)挑戰(zhàn); 3. 鯤鵬BoostKit機(jī)器學(xué)習(xí)算法原理創(chuàng)新; 4. 面向鯤鵬的算法親和優(yōu)化實(shí)踐; 5. 鯤鵬BoostKit機(jī)器學(xué)習(xí)算法實(shí)踐。 聽(tīng)眾收益:來(lái)自:百科