- 主流的深度學(xué)習(xí)框架 內(nèi)容精選 換一換
-
征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來解釋說明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺、 語音識(shí)別 、自然語言處理等其他領(lǐng)域。來自:百科sorFlow 2的基 礎(chǔ)操作與常用模塊的使用。最后將通過基于TensorFlow的MNIST手寫體數(shù)字的實(shí) 驗(yàn),加深地對深度學(xué)習(xí)建模流程的理解與熟悉度。 目標(biāo)學(xué)員 需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo)來自:百科
- 主流的深度學(xué)習(xí)框架 相關(guān)內(nèi)容
-
來自:百科的深度學(xué)習(xí)。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員了解如下知識(shí): 1、高效的結(jié)構(gòu)設(shè)計(jì)。 2、用NAS搜索輕量級網(wǎng)絡(luò)。 3、數(shù)據(jù)高效的模型壓縮。 4、1bit量化。 課程大綱 第1章 能耗高效的深度學(xué)習(xí)的背景 第2章 高效的神經(jīng)元和結(jié)構(gòu)設(shè)計(jì) 第3章 基于NAS的輕量級神經(jīng)網(wǎng)絡(luò) 第4章來自:百科
- 主流的深度學(xué)習(xí)框架 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來自:百科
數(shù)據(jù)庫安全 基礎(chǔ) HCIA- GaussDB 系列課程。數(shù)據(jù)庫作為核心的基礎(chǔ)軟件,在我們的系統(tǒng)架構(gòu)中處于系統(tǒng)的最末端,它是查詢和存儲(chǔ)數(shù)據(jù)的系統(tǒng),是各業(yè)務(wù)數(shù)據(jù)最終落地的承載者,而當(dāng)今社會(huì)最值錢的又是擁有大量的數(shù)據(jù),因此其數(shù)據(jù)庫安全性至關(guān)重要。 立即學(xué)習(xí) 最新文章 替換VolcanoJobreplace來自:百科
到完成末站完工。所有流程的生產(chǎn)記錄都與現(xiàn)況零時(shí)差搜集反應(yīng),加工過程的報(bào)廢品及良品本系統(tǒng)也有完整的記錄,生產(chǎn)批完成時(shí)可以將信息實(shí)時(shí)同步更新回ERP系統(tǒng)的生產(chǎn)入庫單以進(jìn)行存貨管理。 主流程的管理控制主要在于「產(chǎn)品基本數(shù)據(jù)」相關(guān)數(shù)據(jù)必須完整與正確,為讓本系統(tǒng)的功能能完整發(fā)揮,導(dǎo)入時(shí)一定要仔細(xì)了解產(chǎn)品基本數(shù)據(jù)的定義。來自:云商店
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.3 本書涉及的深度學(xué)習(xí)框架
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.5 深度學(xué)習(xí)展望
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.4 優(yōu)化深度學(xué)習(xí)的方法
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.2.2 基于統(tǒng)計(jì)的深度學(xué)習(xí)技術(shù)
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——2.2 TensorFlow框架安裝
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——2TensorFlow深度學(xué)習(xí)框
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.1.2 傳統(tǒng)機(jī)器學(xué)習(xí)與深度學(xué)習(xí)的對比
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——2.2.2 測試TensorFlow
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——2.3.2 ResNet