- 深度學(xué)習(xí)優(yōu)化方法 內(nèi)容精選 換一換
-
來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科
- 深度學(xué)習(xí)優(yōu)化方法 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來(lái)自:百科從MindSpore手寫數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 從MindSpore手寫數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 時(shí)間:2020-11-23 16:08:48 深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)分支之一,應(yīng)用日益廣泛。 語(yǔ)音識(shí)別 、自動(dòng) 機(jī)器翻譯 、即時(shí)視覺翻譯、刷臉支付、人臉考勤……不知不覺,深度學(xué)習(xí)已經(jīng)滲入到我們生活中的每個(gè)來(lái)自:百科
- 深度學(xué)習(xí)優(yōu)化方法 更多內(nèi)容
-
程將介紹深度學(xué)習(xí)算法的知識(shí)。 課程簡(jiǎn)介 本課程將會(huì)探討深度學(xué)習(xí)中的基礎(chǔ)理論、算法、使用方法、技巧與不同的深度學(xué)習(xí)模型。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、掌握神經(jīng)網(wǎng)絡(luò)基礎(chǔ)理論。 2、掌握深度學(xué)習(xí)中數(shù)據(jù)處理的基本方法。 3、掌握深度學(xué)習(xí)訓(xùn)練中調(diào)參、模型選擇的基本方法。 4、掌握主流深度學(xué)習(xí)模型的技術(shù)特點(diǎn)。來(lái)自:百科華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科企業(yè)門戶優(yōu)勢(shì) 精美模板:7大色系,60+行業(yè)覆蓋,3000+套模板 五站合一:PC/手機(jī)/小程序/微信公眾號(hào)/App一站式搭建 網(wǎng)站推廣優(yōu)化:支持多種搜索引擎優(yōu)化(SEO)設(shè)置,提高網(wǎng)站排名 安全放心:華為 云安全 加固,支持HTTPS防劫持、防篡改、防監(jiān)聽 企業(yè)門戶 建站怎么選? 定制建站來(lái)自:專題華為云計(jì)算 云知識(shí) 公網(wǎng)接入-成本優(yōu)化相關(guān)介紹 公網(wǎng)接入-成本優(yōu)化相關(guān)介紹 時(shí)間:2021-03-25 16:03:29 云服務(wù)器 云計(jì)算 網(wǎng)絡(luò)安全 公網(wǎng)IP 公網(wǎng)帶寬使用量:根據(jù)業(yè)務(wù)公網(wǎng)帶寬使用量的多少,選擇合理的計(jì)費(fèi)模式。 主要支持如下幾種計(jì)費(fèi)模式: 1.帶寬計(jì)費(fèi):按購(gòu)買帶寬大小和使用時(shí)長(zhǎng)進(jìn)行收費(fèi);來(lái)自:百科割接后,業(yè)務(wù)運(yùn)行穩(wěn)定性監(jiān)控: •關(guān)鍵KPI指標(biāo)確認(rèn) •每日健康巡檢 •實(shí)時(shí)性能監(jiān)控 優(yōu)化 •通過(guò)上云遷移過(guò)程優(yōu)化系統(tǒng)結(jié)構(gòu),部署方式 •存儲(chǔ)優(yōu)化 •虛擬化平臺(tái)優(yōu)化 •OS優(yōu)化 •數(shù)據(jù)庫(kù)優(yōu)化 評(píng)估 根據(jù)業(yè)務(wù)運(yùn)行情況,遷移計(jì)劃書評(píng)估遷移完成結(jié)果。 •目標(biāo)性能基線 •性能基線比對(duì)(與遷移前比對(duì)) 驗(yàn)收 客戶簽署《業(yè)來(lái)自:百科華為云計(jì)算 云知識(shí) 數(shù)據(jù)庫(kù)設(shè)計(jì)的方法:新奧爾良方法 數(shù)據(jù)庫(kù)設(shè)計(jì)的方法:新奧爾良方法 時(shí)間:2021-06-02 09:44:14 數(shù)據(jù)庫(kù) 1978年10月,來(lái)自三十多個(gè)國(guó)家的數(shù)據(jù)庫(kù)專家在美國(guó)新奧爾良市專門討論了數(shù)據(jù)庫(kù)設(shè)計(jì)問(wèn)題。 他們運(yùn)用軟件工程的思想和方法,提出了數(shù)據(jù)庫(kù)設(shè)計(jì)的規(guī)范,這來(lái)自:百科華為云計(jì)算 云知識(shí) 【云小課】如何查看和優(yōu)化慢SQL 【云小課】如何查看和優(yōu)化慢SQL 時(shí)間:2021-10-14 10:05:36 云小課 數(shù)據(jù)庫(kù) 云數(shù)據(jù)庫(kù) GaussDB(for MySQL) 慢SQL產(chǎn)生的主要原因有SQL編寫問(wèn)題、鎖等待、業(yè)務(wù)實(shí)例相互干擾對(duì)IO/CPU資源征來(lái)自:百科需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類 3. 機(jī)器學(xué)習(xí)的整體流程來(lái)自:百科云知識(shí) 數(shù)據(jù)治理 實(shí)施方法 數(shù)據(jù)治理實(shí)施方法 時(shí)間:2020-09-09 11:01:02 數(shù)據(jù)治理實(shí)施方法論按照數(shù)據(jù)治理成熟度評(píng)估->評(píng)估現(xiàn)狀、確定目標(biāo)、分析差距->計(jì)劃制定、計(jì)劃執(zhí)行->持續(xù)監(jiān)測(cè)度量演進(jìn)的關(guān)鍵實(shí)施方法形成數(shù)據(jù)治理實(shí)施閉環(huán)流程。 圖1數(shù)據(jù)治理實(shí)施方法論 這也遵循了PD來(lái)自:百科
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.4 優(yōu)化深度學(xué)習(xí)的方法
- 動(dòng)手學(xué)深度學(xué)習(xí):優(yōu)化與深度學(xué)習(xí)的關(guān)系
- 深度學(xué)習(xí)優(yōu)化策略基礎(chǔ)算法、改進(jìn)方法與前沿創(chuàng)新
- 深度學(xué)習(xí)基礎(chǔ)-優(yōu)化算法詳解
- 探索基于深度強(qiáng)化學(xué)習(xí)的石油煉化過(guò)程優(yōu)化方法
- XEngine-深度學(xué)習(xí)推理優(yōu)化
- 《Keras深度學(xué)習(xí)實(shí)戰(zhàn)》—3.4 優(yōu)化
- 深度學(xué)習(xí)最全優(yōu)化方法總結(jié)比較(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)
- 基于深度學(xué)習(xí)的石油煉化過(guò)程優(yōu)化
- 基于TensorFlow的深度學(xué)習(xí)模型優(yōu)化策略