- 深度學(xué)習(xí)訓(xùn)練完了后如何推理 內(nèi)容精選 換一換
-
來(lái)自:百科需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:描述神經(jīng)網(wǎng)絡(luò)的定義與發(fā)展;熟悉深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的重要“部件”;熟悉神經(jīng)網(wǎng)絡(luò)的訓(xùn)練與優(yōu)化;描述深度學(xué)習(xí)中常見(jiàn)的問(wèn)題。 課程大綱 1. 深度學(xué)習(xí)簡(jiǎn)介 2. 訓(xùn)練法則 3.來(lái)自:百科
- 深度學(xué)習(xí)訓(xùn)練完了后如何推理 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來(lái)自:百科數(shù)字圖片訓(xùn)練集,分為訓(xùn)練集和測(cè)試集。訓(xùn)練集涵蓋6萬(wàn)張手寫(xiě)數(shù)字圖片,測(cè)試級(jí)涵蓋1萬(wàn)張手寫(xiě)數(shù)字圖片。每一張圖片皆為經(jīng)過(guò)尺寸標(biāo)準(zhǔn)化的黑白圖像,是28*28像素,像素值為0或者1的二值化圖像。MNIST數(shù)據(jù)集的原始圖像是黑白的,但在實(shí)際訓(xùn)練中使用數(shù)據(jù)增強(qiáng)后的圖片能夠獲得更好的訓(xùn)練效果。 本次訓(xùn)練所使用的經(jīng)過(guò)數(shù)據(jù)增強(qiáng)的圖片來(lái)自:百科
- 深度學(xué)習(xí)訓(xùn)練完了后如何推理 更多內(nèi)容
-
致欠費(fèi)。欠費(fèi)后資源會(huì)被凍結(jié),您可以續(xù)費(fèi)后解凍資源,方可繼續(xù)正常使用。 注意: 在保留期進(jìn)行的續(xù)費(fèi),是以原到期時(shí)間作為生效時(shí)間,您應(yīng)當(dāng)支付從進(jìn)入保留期開(kāi)始到續(xù)費(fèi)時(shí)的服務(wù)費(fèi)用。 包年/包月 包年/包月模式的資源到期后,就不可用。 計(jì)費(fèi)說(shuō)明常見(jiàn)問(wèn)題 計(jì)費(fèi)說(shuō)明常見(jiàn)問(wèn)題 如何查看ModelArts中正在收費(fèi)的作業(yè)?來(lái)自:專(zhuān)題
華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的 語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣(mài)機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科
權(quán)完成操作。 創(chuàng)建訓(xùn)練作業(yè) 1、登錄ModelArts管理控制臺(tái)。 2、在左側(cè)導(dǎo)航欄中,選擇“訓(xùn)練管理 > 訓(xùn)練作業(yè)”,進(jìn)入“訓(xùn)練作業(yè)”列表。 3、單擊“創(chuàng)建訓(xùn)練作業(yè)”,進(jìn)入“創(chuàng)建訓(xùn)練作業(yè)”頁(yè)面,在該頁(yè)面填寫(xiě)訓(xùn)練作業(yè)相關(guān)參數(shù)信息。 4、選擇訓(xùn)練資源的規(guī)格。訓(xùn)練參數(shù)的可選范圍與已有算法的使用約束保持一致。來(lái)自:專(zhuān)題
、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科
模型開(kāi)發(fā) 數(shù)據(jù)準(zhǔn)備完成后,可進(jìn)行AI模型開(kāi)發(fā)。AI模型開(kāi)發(fā)的過(guò)程,稱(chēng)之為Modeling,一般包含兩個(gè)階段:開(kāi)發(fā)階段和實(shí)驗(yàn)階段。兩個(gè)過(guò)程可以相互轉(zhuǎn)換。如開(kāi)發(fā)階段代碼穩(wěn)定后,則會(huì)進(jìn)入實(shí)驗(yàn)階段,通過(guò)不斷嘗試調(diào)整超參來(lái)迭代模型;或在實(shí)驗(yàn)階段,有一個(gè)可以?xún)?yōu)化訓(xùn)練的性能的想法,則會(huì)回到開(kāi)來(lái)自:專(zhuān)題
- 初識(shí)深度學(xué)習(xí)推理框架 | 簡(jiǎn)記
- 在華為云上使用彈性GPU服務(wù)加速深度學(xué)習(xí)訓(xùn)練和推理
- XEngine-深度學(xué)習(xí)推理優(yōu)化
- RNN訓(xùn)練推理及成員推理攻擊
- RL的訓(xùn)練推理及成員推理攻擊
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- 斯坦福DAWNBench深度學(xué)習(xí)訓(xùn)練及推理榜單:華為云ModelArts拿下雙料冠軍
- 快速入門(mén)存內(nèi)計(jì)算—助力人工智能加速深度學(xué)習(xí)模型的訓(xùn)練和推理
- SenseVoice 訓(xùn)練推理適配昇騰
- 如何基于ModelArts實(shí)現(xiàn)最快最普惠的深度學(xué)習(xí)訓(xùn)練?