- 深度學(xué)習(xí)訓(xùn)練完了后如何推理 內(nèi)容精選 換一換
-
來自:百科需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:描述神經(jīng)網(wǎng)絡(luò)的定義與發(fā)展;熟悉深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的重要“部件”;熟悉神經(jīng)網(wǎng)絡(luò)的訓(xùn)練與優(yōu)化;描述深度學(xué)習(xí)中常見的問題。 課程大綱 1. 深度學(xué)習(xí)簡介 2. 訓(xùn)練法則 3.來自:百科
- 深度學(xué)習(xí)訓(xùn)練完了后如何推理 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來自:百科數(shù)字圖片訓(xùn)練集,分為訓(xùn)練集和測試集。訓(xùn)練集涵蓋6萬張手寫數(shù)字圖片,測試級涵蓋1萬張手寫數(shù)字圖片。每一張圖片皆為經(jīng)過尺寸標(biāo)準(zhǔn)化的黑白圖像,是28*28像素,像素值為0或者1的二值化圖像。MNIST數(shù)據(jù)集的原始圖像是黑白的,但在實(shí)際訓(xùn)練中使用數(shù)據(jù)增強(qiáng)后的圖片能夠獲得更好的訓(xùn)練效果。 本次訓(xùn)練所使用的經(jīng)過數(shù)據(jù)增強(qiáng)的圖片來自:百科
- 深度學(xué)習(xí)訓(xùn)練完了后如何推理 更多內(nèi)容
-
華為云計(jì)算 云知識 基于深度學(xué)習(xí)算法的 語音識別 基于深度學(xué)習(xí)算法的語音識別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語音數(shù)據(jù)集THCHS30進(jìn)行語音識別的實(shí)戰(zhàn)演練,讓使用者在了解語音識別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來自:百科華為云計(jì)算 云知識 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺來自:百科
- 初識深度學(xué)習(xí)推理框架 | 簡記
- 在華為云上使用彈性GPU服務(wù)加速深度學(xué)習(xí)訓(xùn)練和推理
- XEngine-深度學(xué)習(xí)推理優(yōu)化
- RNN訓(xùn)練推理及成員推理攻擊
- RL的訓(xùn)練推理及成員推理攻擊
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- SenseVoice 訓(xùn)練推理適配昇騰
- 快速入門存內(nèi)計(jì)算—助力人工智能加速深度學(xué)習(xí)模型的訓(xùn)練和推理
- 斯坦福DAWNBench深度學(xué)習(xí)訓(xùn)練及推理榜單:華為云ModelArts拿下雙料冠軍
- 如何基于ModelArts實(shí)現(xiàn)最快最普惠的深度學(xué)習(xí)訓(xùn)練?