- 深度學(xué)習(xí)需要掌握的 內(nèi)容精選 換一換
-
征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺(jué)、 語(yǔ)音識(shí)別 、自然語(yǔ)言處理等其他領(lǐng)域。來(lái)自:百科來(lái)自:百科
- 深度學(xué)習(xí)需要掌握的 相關(guān)內(nèi)容
-
本課程介紹了雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例,讓你對(duì)雙向深度學(xué)習(xí)有初步的認(rèn)知。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、認(rèn)識(shí)雙向智能。 2、了解深度雙向智能的理論、算法和應(yīng)用示例。 課程大綱 第1章 引言 第2章 雙向智能 第3章 深度雙向智能 華為云 面向未來(lái)的智能世界,數(shù)字化來(lái)自:百科云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科
- 深度學(xué)習(xí)需要掌握的 更多內(nèi)容
-
更好的訓(xùn)練效果。 本次訓(xùn)練所使用的經(jīng)過(guò)數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過(guò)人工神經(jīng)網(wǎng)絡(luò)來(lái)提取特征,不同層的輸出常被視為神經(jīng)網(wǎng)絡(luò)提取出的不同尺度的特征,上一層的輸出來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科數(shù)據(jù)透視表,是大家日常工作中常用的一種數(shù)據(jù)處理工具,除了較常用的插入-數(shù)據(jù)透視表的方法外,用快捷鍵也可以實(shí)現(xiàn)快速創(chuàng)建數(shù)據(jù)透視表。 選中需要處理的數(shù)據(jù)區(qū)域,按下「ALT+D+P」就可以了。 06 「Alt+;」,選中非隱藏?cái)?shù)據(jù)區(qū)域 我們經(jīng)常會(huì)遇到復(fù)制篩選數(shù)據(jù)時(shí),隱藏區(qū)域的數(shù)據(jù)也同樣被復(fù)制,還得手動(dòng)刪除,比較麻煩。來(lái)自:云商店提交到數(shù)據(jù)庫(kù)的SQL為基本單元的性能數(shù)據(jù); 數(shù)據(jù)庫(kù)工具提交的作業(yè)相關(guān)的性能數(shù)據(jù)(如加載,卸載,備份,恢復(fù)等)。 關(guān)注的時(shí)間范圍: 日常范圍:一周高峰時(shí)段的時(shí)間;月度結(jié)束的時(shí)間;季節(jié)變化數(shù)據(jù)。 一天范圍內(nèi):用戶集中使用系統(tǒng)的時(shí)間段;系統(tǒng)壓力比較高的時(shí)間段等。 文中課程 更多精彩課堂、微認(rèn)證、沙箱實(shí)驗(yàn),盡在華為云學(xué)院來(lái)自:百科delArts創(chuàng)建的Notebook上進(jìn)行實(shí)踐。眾所周知,編程過(guò)程中肯定需要找個(gè)地方來(lái)存放數(shù)據(jù),所以實(shí)驗(yàn)的第一步,就是創(chuàng)建一個(gè)用于存儲(chǔ)數(shù)據(jù)的 OBS 桶。不用擔(dān)心不知道如何創(chuàng)建OBS桶,沙箱實(shí)驗(yàn)室中有詳細(xì)的實(shí)驗(yàn)手冊(cè),每一步都能感受到開(kāi)發(fā)人員的貼心! 創(chuàng)建好存儲(chǔ)數(shù)據(jù)的OBS桶后,就可以來(lái)自:百科
- 鏡像新人需要掌握的知識(shí)
- 軟件測(cè)試所需要掌握的技能
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.4 MXNet開(kāi)發(fā)需要具備的知識(shí)
- Android學(xué)習(xí)之關(guān)于實(shí)現(xiàn)子線程需要掌握的兩種方式
- 前端開(kāi)發(fā)需要掌握的 Docker 知識(shí)
- 動(dòng)手學(xué)深度學(xué)習(xí)需要這些數(shù)學(xué)基礎(chǔ)知識(shí)
- 高級(jí)運(yùn)維需要掌握哪些技術(shù)?
- HTML深度解析:掌握換行的藝術(shù)
- 接口測(cè)試人員需要掌握的知識(shí)技能
- 前端:需要掌握哪些技能才能找到滿意的工作?