- 深度學(xué)習(xí)需要的基礎(chǔ) 內(nèi)容精選 換一換
-
征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺(jué)、 語(yǔ)音識(shí)別 、自然語(yǔ)言處理等其他領(lǐng)域。來(lái)自:百科來(lái)自:百科
- 深度學(xué)習(xí)需要的基礎(chǔ) 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 學(xué)習(xí)Python編程需要什么基礎(chǔ):模塊 學(xué)習(xí)Python編程需要什么基礎(chǔ):模塊 時(shí)間:2021-04-07 09:30:36 函數(shù)是一個(gè)能完成特定功能的代碼塊,可在程序中重復(fù)使用,減少程序的代碼量和提高程序函模塊提供了一種邏輯的 方式來(lái)組織我們的代碼; 模塊的物理形式就來(lái)自:百科返回值不是必須的,如果沒(méi)有return語(yǔ)句,則Python默認(rèn)返回值None; 函數(shù)的參數(shù)是函數(shù)與外部溝通的橋梁,它可接收外部傳遞過(guò)來(lái)的值;在函數(shù)內(nèi)部中給參數(shù)賦值不會(huì)影響調(diào)用者;在函數(shù)內(nèi)部修改可變類型的參數(shù)會(huì)影響到調(diào)用者。 文中課程 更多精彩課程、實(shí)驗(yàn)、微認(rèn)證,盡在?????????????華為云學(xué)院來(lái)自:百科
- 深度學(xué)習(xí)需要的基礎(chǔ) 更多內(nèi)容
-
、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見(jiàn)的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科
云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科
更好的訓(xùn)練效果。 本次訓(xùn)練所使用的經(jīng)過(guò)數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過(guò)人工神經(jīng)網(wǎng)絡(luò)來(lái)提取特征,不同層的輸出常被視為神經(jīng)網(wǎng)絡(luò)提取出的不同尺度的特征,上一層的輸出來(lái)自:百科
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科
華為云計(jì)算 云知識(shí) CBR中的基礎(chǔ)概念 CBR中的基礎(chǔ)概念 時(shí)間:2021-07-02 10:50:39 CBR中的常用基礎(chǔ)概念有: 1. 存儲(chǔ)庫(kù) 云備份使用存儲(chǔ)庫(kù)來(lái)存放備份,存儲(chǔ)庫(kù)分為備份存儲(chǔ)庫(kù)和復(fù)制存儲(chǔ)庫(kù)兩種。 2. 復(fù)制 復(fù)制是指將一個(gè)區(qū)域已經(jīng)生成的備份 數(shù)據(jù)復(fù)制 到另一個(gè)區(qū)域。來(lái)自:百科
角色: IAM 最初提供的一種根據(jù)用戶的工作職能定義權(quán)限的粗粒度授權(quán)機(jī)制。該機(jī)制以服務(wù)為粒度,提供有限的服務(wù)相關(guān)角色用于授權(quán) IAM最新提供的一種細(xì)粒度授權(quán)的能力,可以精確到具體服務(wù)的操作、資源以及請(qǐng)求條件等?;诓呗?span style='color:#C7000B'>的授權(quán)是一種更加靈活的授權(quán)方式,能夠滿足企業(yè)對(duì)權(quán)限最小化的安全管控要求。來(lái)自:專題
課程簡(jiǎn)介 人工智能的技術(shù)歸根到底都建立在數(shù)學(xué)模型之上,本課程為大家介紹AI中所用到的數(shù)學(xué)基礎(chǔ)知識(shí)。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、掌握線性代數(shù)的基礎(chǔ)知識(shí)及應(yīng)用。 2、掌握概率論與數(shù)理統(tǒng)計(jì)的基礎(chǔ)知識(shí)及應(yīng)用。 3、理解信息熵與基尼系數(shù)的相關(guān)知識(shí)。 4、掌握常用的最優(yōu)化算法及應(yīng)用。來(lái)自:百科
- 動(dòng)手學(xué)深度學(xué)習(xí)需要這些數(shù)學(xué)基礎(chǔ)知識(shí)
- 【AI基礎(chǔ)】深度學(xué)習(xí)入門指南:25個(gè)初學(xué)者需要知道的概念
- 深度學(xué)習(xí)基礎(chǔ)與技巧
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.4 MXNet開發(fā)需要具備的知識(shí)
- 深度學(xué)習(xí)基礎(chǔ)-優(yōu)化算法詳解
- 深度學(xué)習(xí)基礎(chǔ)-損失函數(shù)詳解
- 深度學(xué)習(xí)基礎(chǔ)-機(jī)器學(xué)習(xí)基本原理
- 深度學(xué)習(xí)前常見(jiàn)的python基礎(chǔ)知識(shí)
- 對(duì)深度學(xué)習(xí)概念的基礎(chǔ)理解與認(rèn)識(shí)
- 深度學(xué)習(xí)基礎(chǔ):1.張量的基本操作