- 深度學(xué)習(xí)挖掘特征 內(nèi)容精選 換一換
-
來自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科
- 深度學(xué)習(xí)挖掘特征 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來自:百科來自:百科
- 深度學(xué)習(xí)挖掘特征 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來自:百科云知識(shí) 云審計(jì) 主要功能-數(shù)據(jù)價(jià)值挖掘 云審計(jì)主要功能-數(shù)據(jù)價(jià)值挖掘 時(shí)間:2021-07-01 16:42:29 云審計(jì)服務(wù)支持對(duì)審計(jì)日志中的數(shù)據(jù)進(jìn)行挖掘,為業(yè)務(wù)健康度分析、風(fēng)險(xiǎn)分析、資源跟蹤、成本分析等提供支撐,并支持開放審計(jì)數(shù)據(jù)給客戶,供客戶自行挖掘數(shù)據(jù)價(jià)值。 云審計(jì)日志包括時(shí)間來自:百科時(shí)間:2021-04-02 15:07:19 數(shù)據(jù)集,又稱為資料集、數(shù)據(jù)集合或資料集合,是一種由數(shù)據(jù)所組成的集合。數(shù)據(jù)反映了真實(shí)世界的狀況。數(shù)據(jù)集作為深度學(xué)習(xí)和機(jī)器學(xué)習(xí)的輸入,對(duì)AI開發(fā)有至關(guān)重要的意義。 ModelArts 數(shù)據(jù)管理 提供了一套高效便捷的管理和標(biāo)注數(shù)據(jù)集框架。不僅支持圖片、文本、語音、來自:百科組件。 彈性云服務(wù)器 創(chuàng)建成功后,您就可以像使用自己的本地PC或物理服務(wù)器一樣,在云上使用彈性云服務(wù)器。 產(chǎn)品詳情 幫助文檔 云計(jì)算平臺(tái) 有什么特征 華為云計(jì)算有豐富的云服務(wù)產(chǎn)品 計(jì)算服務(wù)分類下的服務(wù)包括:彈性云服務(wù)器 E CS 、GPU加速云服務(wù)器、裸金屬服務(wù)器 BMS、 云手機(jī) CPH、彈性伸縮AS、鏡像服務(wù)來自:專題AI開發(fā)平臺(tái) AI開發(fā)平臺(tái)產(chǎn)品為用戶提供一站式機(jī)器/深度學(xué)習(xí)解決方案。支持?jǐn)?shù)據(jù)預(yù)處理、模型構(gòu)建、模型訓(xùn)練、模型評(píng)估、模型服務(wù)的全流程開發(fā)及部署支持,提供多樣化建模方式,幫助用戶快速創(chuàng)建和部署模型 AI開發(fā)平臺(tái)產(chǎn)品為用戶提供一站式機(jī)器/深度學(xué)習(xí)解決方案。支持?jǐn)?shù)據(jù)預(yù)處理、模型構(gòu)建、模型訓(xùn)練、來自:專題升預(yù)測性能 時(shí)間序列預(yù)測 利用過去數(shù)據(jù)預(yù)測未來趨勢(shì);可基于時(shí)間維度進(jìn)行自動(dòng)任務(wù)理解和輔助特征工程,來提升時(shí)間序列類任務(wù)的精度 異常檢測 用于預(yù)測數(shù)據(jù)集中的異常數(shù)據(jù)點(diǎn);可通過學(xué)習(xí)正常數(shù)據(jù)的特征分布規(guī)律來建立基準(zhǔn)模型,可融合多個(gè)基準(zhǔn)模型提升預(yù)測精度并減少誤報(bào)和漏報(bào)的情況 盤古科學(xué)計(jì)算大模型產(chǎn)品功能來自:專題手把手教你玩轉(zhuǎn) 人臉識(shí)別 ,初探深度學(xué)習(xí)。 課程簡介 本課程主要內(nèi)容包括:人臉識(shí)別原理、機(jī)器如何提取圖像的特征。 課程目標(biāo) 通過本課程學(xué)習(xí),了解機(jī)器學(xué)習(xí)的方法及快速掌握人臉識(shí)別應(yīng)用。 課程大綱 第1節(jié) 機(jī)器學(xué)習(xí)內(nèi)容回顧 第2節(jié) 機(jī)器是如何進(jìn)行圖像分類 第3節(jié) 圖像的特征提取 第4節(jié) 初探深度學(xué)習(xí) 第5節(jié)來自:百科
- 《Python數(shù)據(jù)挖掘與機(jī)器學(xué)習(xí)實(shí)戰(zhàn)》—1.3.4 深度學(xué)習(xí)
- 《深度剖析:特征工程—機(jī)器學(xué)習(xí)的隱秘基石》
- 語音情感識(shí)別之手工特征深度學(xué)習(xí)方法
- 基于深度學(xué)習(xí)的油藏地質(zhì)特征提取方法
- 《深度剖析:特征工程—機(jī)器學(xué)習(xí)的隱秘基石》
- 深度學(xué)習(xí)模型在油田數(shù)據(jù)挖掘中的應(yīng)用
- kafka 架構(gòu)原理深度挖掘
- 【數(shù)據(jù)挖掘】視覺模式挖掘:Hog特征+余弦相似度/k-means聚類
- ASK-HAR:多尺度特征提取的深度學(xué)習(xí)模型
- 【論文筆記】語音情感識(shí)別之手工特征深度學(xué)習(xí)方法