- 深度學(xué)習(xí)上采樣 內(nèi)容精選 換一換
-
器支持GPU NVLink技術(shù),實(shí)現(xiàn)GPU之間的直接通信,提升GPU之間的數(shù)據(jù)傳輸效率。能夠提供超高的通用計(jì)算能力,適用于AI深度學(xué)習(xí)、科學(xué)計(jì)算,在深度學(xué)習(xí)訓(xùn)練、科學(xué)計(jì)算、計(jì)算流體動(dòng)力學(xué)、計(jì)算金融、地震分析、分子建模、基因組學(xué)等領(lǐng)域都能表現(xiàn)出巨大的計(jì)算優(yōu)勢(shì)。 P2v型 彈性云服務(wù)器 的規(guī)格來自:百科推送的直播流生效。 ●轉(zhuǎn)碼模板中的高清低碼默認(rèn)是關(guān)閉的,若您開啟,直播轉(zhuǎn)碼將按高清低碼標(biāo)準(zhǔn)計(jì)費(fèi),價(jià)格詳情請(qǐng)參見產(chǎn)品價(jià)格詳情。 ●暫不支持上采樣轉(zhuǎn)碼,若轉(zhuǎn)碼模板中設(shè)置的分辨率高于推流分辨率,對(duì)應(yīng)分辨率的播放地址可以成功播放,但播放視頻的分辨率為原始分辨率。 高清低碼什么意思 高清低碼,極致高清視頻體驗(yàn)來自:專題
- 深度學(xué)習(xí)上采樣 相關(guān)內(nèi)容
-
模型超參自動(dòng)優(yōu)化,簡(jiǎn)單快速。 零代碼開發(fā),簡(jiǎn)單操作訓(xùn)練出自己的模型。 支持模型一鍵部署到云、邊、端。 高性能 自研MoXing深度學(xué)習(xí)框架,提升算法開發(fā)效率和訓(xùn)練速度。 優(yōu)化深度模型推理中GPU的利用率,加速云端在線推理。 可生成在Ascend芯片上運(yùn)行的模型,實(shí)現(xiàn)高效端邊推理。 靈活 支持來自:百科P1/Pi1實(shí)例,滿足科學(xué)計(jì)算、深度學(xué)習(xí)訓(xùn)練、推理等計(jì)算場(chǎng)景 G系列G3/G1提供多種顯存,滿足圖形圖像場(chǎng)景。P系列提供P2v/P1/Pi1實(shí)例,滿足科學(xué)計(jì)算、深度學(xué)習(xí)訓(xùn)練、推理等計(jì)算場(chǎng)景 生態(tài)優(yōu)秀 完善的生態(tài)環(huán)境,全面支持多種GPU應(yīng)用程序、深度學(xué)習(xí)框架。G系列支持OpenGL來自:專題
- 深度學(xué)習(xí)上采樣 更多內(nèi)容
-
ModelArts特色功能如下所示: 數(shù)據(jù)治理 支持?jǐn)?shù)據(jù)篩選、標(biāo)注等數(shù)據(jù)處理,提供數(shù)據(jù)集版本管理,特別是深度學(xué)習(xí)的大數(shù)據(jù)集,讓訓(xùn)練結(jié)果可重現(xiàn)。 極“快”致“簡(jiǎn)”模型訓(xùn)練 自研的MoXing深度學(xué)習(xí)框架,更高效更易用,大大提升訓(xùn)練速度。 云邊端多場(chǎng)景部署 支持模型部署到多種生產(chǎn)環(huán)境,可部署來自:百科
時(shí)間:2020-09-24 16:51:33 定制 語音識(shí)別 ,基于深度學(xué)習(xí)技術(shù),提供針對(duì)特定領(lǐng)域優(yōu)化的語音識(shí)別能力,并可自定義語言模型。可根據(jù)客戶特定需求深度定制,提升產(chǎn)品的人機(jī)交互體驗(yàn)。 產(chǎn)品特性 高識(shí)別率 基于深度學(xué)習(xí)技術(shù),對(duì)特定領(lǐng)域場(chǎng)景和語料進(jìn)行優(yōu)化,語音識(shí)別率達(dá)到業(yè)界領(lǐng)先 前沿技術(shù)來自:百科
。關(guān)鍵性能指標(biāo)(KPI),反應(yīng)了網(wǎng)絡(luò)性能和質(zhì)量。對(duì)KPI進(jìn)行檢測(cè),能夠及時(shí)發(fā)現(xiàn)網(wǎng)絡(luò)質(zhì)量劣化風(fēng)險(xiǎn)。本賽題數(shù)據(jù)中提供某運(yùn)營(yíng)商的KPI真實(shí)數(shù)據(jù),采樣間隔為1小時(shí)。參賽選手需要根據(jù)歷史40天異常標(biāo)簽數(shù)據(jù)(訓(xùn)練數(shù)據(jù)集),訓(xùn)練模型并檢測(cè)后續(xù)17天內(nèi)各KPI(測(cè)試數(shù)據(jù)集)中的異常。 【賽事階段】來自:百科
索和分類、基于場(chǎng)景內(nèi)容或者物體的廣告推薦等功能更加準(zhǔn)確。 圖1 圖像標(biāo)簽 示例圖 名人識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)模型對(duì)圖片內(nèi)容進(jìn)行檢測(cè),準(zhǔn)確識(shí)別圖像中包含的影視明星及網(wǎng)紅人物。 翻拍識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)算法判斷條形碼圖片為原始拍攝,還是經(jīng)過二次翻拍、打印翻拍等手法二次處理的圖片。利用翻來自:百科
用戶體驗(yàn) 優(yōu)勢(shì) 準(zhǔn)確率高 基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高 快速迭代 持續(xù)快速的迭代文本詞庫(kù),及時(shí)識(shí)別新型不合規(guī)內(nèi)容 注冊(cè)昵稱審核 對(duì)網(wǎng)站的用戶注冊(cè)信息進(jìn)行智能審核,過濾包含廣告、反動(dòng)、涉黃等內(nèi)容的用戶昵稱 優(yōu)勢(shì) 準(zhǔn)確率高 基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高 海量詞庫(kù) 內(nèi)置海量詞庫(kù),支持各種匹配規(guī)則來自:百科
高讀寫性能:PB級(jí)數(shù)據(jù)量訪問;十倍于單機(jī)數(shù)據(jù)庫(kù)連接數(shù);百萬級(jí)高并發(fā) 物聯(lián)網(wǎng)數(shù)據(jù) 在工業(yè)監(jiān)控和遠(yuǎn)程控制、智慧城市的延展、智能家居、車聯(lián)網(wǎng)等物聯(lián)網(wǎng)場(chǎng)景下。傳感監(jiān)控設(shè)備多,采樣頻率高,數(shù)據(jù)規(guī)模大,會(huì)產(chǎn)生超過單機(jī)數(shù)據(jù)庫(kù)存儲(chǔ)能力極限的數(shù)據(jù),造成數(shù)據(jù)庫(kù)容量瓶頸。 DDM 提供的容量水平擴(kuò)展能力,可以有效的幫助用戶低成本的存儲(chǔ)海量數(shù)據(jù)。來自:百科