- 深度學(xué)習(xí)如何標(biāo)注物體 內(nèi)容精選 換一換
-
功能。人工智能平臺(tái)提供基于非結(jié)構(gòu)化數(shù)據(jù)的深度學(xué)習(xí)模型開發(fā)、訓(xùn)練、評估和發(fā)布,支持多種計(jì)算資源進(jìn)行模型開發(fā)與訓(xùn)練,以及超參調(diào)優(yōu)、模型可視化工具等功能。數(shù)據(jù)標(biāo)注平臺(tái)提供高效率的獨(dú)立的數(shù)據(jù)標(biāo)注功能,支持多類型應(yīng)用場景、多人標(biāo)注、自動(dòng)標(biāo)注和批量標(biāo)注。模型工廠是模型的管理中心,支持模型入庫來自:專題。 圖像標(biāo)簽 可識別三千多種物體以及兩萬多種場景和概念標(biāo)簽,一個(gè)圖像可包含多個(gè)標(biāo)簽內(nèi)容,語義內(nèi)容非常豐富。更智能、準(zhǔn)確的理解圖像內(nèi)容,讓智能相冊管理、照片檢索和分類、基于場景內(nèi)容或者物體的廣告推薦等功能更加準(zhǔn)確。 圖1圖像標(biāo)簽示例圖 名人識別 利用深度神經(jīng)網(wǎng)絡(luò)模型對圖片內(nèi)容進(jìn)行檢來自:百科
- 深度學(xué)習(xí)如何標(biāo)注物體 相關(guān)內(nèi)容
-
便利。 華為云 圖像識別 Image 是一種基于深度學(xué)習(xí)技術(shù)的服務(wù),能夠準(zhǔn)確識別圖像中的視覺內(nèi)容,提供多種物體、場景和概念標(biāo)簽,具備目標(biāo)檢測和屬性識別等能力,幫助客戶準(zhǔn)確識別和理解圖像內(nèi)容1。它廣泛用于圖像自動(dòng)打標(biāo)簽、圖像分類、特定物體檢測、基于圖像內(nèi)容的推薦等場景2。 華為云圖像來自:百科
- 深度學(xué)習(xí)如何標(biāo)注物體 更多內(nèi)容
-
相關(guān)推薦 數(shù)據(jù)標(biāo)注:修改標(biāo)簽 視頻標(biāo)注:修改標(biāo)注 圖像分類:修改標(biāo)注 視頻標(biāo)注:修改標(biāo)注 刪除標(biāo)簽:在標(biāo)簽管理頁面批量刪除 數(shù)據(jù)標(biāo)注:修改標(biāo)注 圖像分類:修改標(biāo)注 物體檢測:修改標(biāo)注 數(shù)據(jù)標(biāo)注:修改標(biāo)注 刪除標(biāo)簽:在標(biāo)簽管理頁面批量刪除 標(biāo)簽管理:已有集群的標(biāo)簽管理 數(shù)據(jù)標(biāo)注:修改標(biāo)注來自:百科中數(shù)百種場景、上千種通用物體及其屬性。讓智能相冊管理、照片檢索和分類、基于場景內(nèi)容或者物體的廣告推薦等功能更加直觀。使用時(shí)用戶發(fā)送待處理圖片,返回圖片標(biāo)簽內(nèi)容及相應(yīng)置信度。 圖像識別 Image 圖像識別( Image Recognition ),基于深度學(xué)習(xí)技術(shù),可準(zhǔn)確識別圖像中的來自:百科圖1功能總覽 ModelArts特色功能如下所示: 數(shù)據(jù)治理 支持?jǐn)?shù)據(jù)篩選、標(biāo)注等數(shù)據(jù)處理,提供數(shù)據(jù)集版本管理,特別是深度學(xué)習(xí)的大數(shù)據(jù)集,讓訓(xùn)練結(jié)果可重現(xiàn)。 極“快”致“簡”模型訓(xùn)練 自研的MoXing深度學(xué)習(xí)框架,更高效更易用,大大提升訓(xùn)練速度。 云邊端多場景部署 支持模型部署到多來自:百科支持自定義鏡像滿足自定義框架及算子需求。 AI開發(fā)平臺(tái) ModelArts ModelArts是面向開發(fā)者的一站式AI開發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Training、自動(dòng)化模型生成,及端-邊-云模型按需部署能力,幫助用戶快速創(chuàng)建和部署模型,管理全周期AI工作流。來自:百科人工智能發(fā)展及應(yīng)用 第2節(jié) 人工智能與機(jī)器學(xué)習(xí) 第3節(jié) 監(jiān)督學(xué)習(xí)與非監(jiān)督學(xué)習(xí)實(shí)例講解 第4節(jié) 如何快速掌握AI應(yīng)用的能力 AI開發(fā)平臺(tái)ModelArts ModelArts是面向開發(fā)者的一站式AI開發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Training、來自:百科AI開發(fā)平臺(tái)ModelArts ModelArts是面向開發(fā)者的一站式AI開發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Training、自動(dòng)化模型生成,及端-邊-云模型按需部署能力,幫助用戶快速創(chuàng)建和部署模型,管理全周期AI工作流。 產(chǎn)品詳情立即注冊一元域名華為 云桌面來自:百科需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類 3. 機(jī)器學(xué)習(xí)的整體流程來自:百科,因此,在數(shù)據(jù)標(biāo)注階段你可能會(huì)發(fā)現(xiàn)還缺少某一部分?jǐn)?shù)據(jù)源,反復(fù)調(diào)整優(yōu)化。 3.訓(xùn)練模型 俗稱“建模”,指通過分析手段、方法和技巧對準(zhǔn)備好的數(shù)據(jù)進(jìn)行探索分析,從中發(fā)現(xiàn)因果關(guān)系、內(nèi)部聯(lián)系和業(yè)務(wù)規(guī)律,為商業(yè)目的提供決策參考。訓(xùn)練模型的結(jié)果通常是一個(gè)或多個(gè)機(jī)器學(xué)習(xí)或深度學(xué)習(xí)模型,模型可以應(yīng)用到新的數(shù)據(jù)中,得到預(yù)測、評價(jià)等結(jié)果。來自:百科
- 深度學(xué)習(xí)標(biāo)注工具Labelme的使用
- 如何使用labelImg標(biāo)注數(shù)據(jù)集,最詳細(xì)的深度學(xué)習(xí)標(biāo)簽教程
- 深度學(xué)習(xí)課程---室內(nèi)小物體目標(biāo)檢測
- 技術(shù)綜述二:標(biāo)注數(shù)據(jù)不足下的深度學(xué)習(xí)方法概述
- 少量標(biāo)注數(shù)據(jù)如何訓(xùn)練
- ModelArts智能標(biāo)注提升70%數(shù)據(jù)標(biāo)注效率學(xué)習(xí)分享
- 逆向?qū)⑽矬w檢測數(shù)據(jù)集生成labelme標(biāo)注的數(shù)據(jù)
- 【深度學(xué)習(xí)】嘿馬深度學(xué)習(xí)筆記第12篇:產(chǎn)品物體檢測項(xiàng)目介紹,3.4 Fast R-CNN【附代碼文檔】
- 【深度學(xué)習(xí)】嘿馬深度學(xué)習(xí)筆記第13篇:YOLO與SSD,4.3 案例:SSD進(jìn)行物體檢測【附代碼文檔】
- 一文了解華為ModelArts|【百變AI秀】