- 深度學(xué)習(xí)融合的幾種方式 內(nèi)容精選 換一換
-
征形成更抽象的高層代表屬性類(lèi)別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺(jué)、 語(yǔ)音識(shí)別 、自然語(yǔ)言處理等其他領(lǐng)域。來(lái)自:百科來(lái)自:百科
- 深度學(xué)習(xí)融合的幾種方式 相關(guān)內(nèi)容
-
本課程介紹了雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例,讓你對(duì)雙向深度學(xué)習(xí)有初步的認(rèn)知。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、認(rèn)識(shí)雙向智能。 2、了解深度雙向智能的理論、算法和應(yīng)用示例。 課程大綱 第1章 引言 第2章 雙向智能 第3章 深度雙向智能 華為云 面向未來(lái)的智能世界,數(shù)字化來(lái)自:百科的深度學(xué)習(xí)。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員了解如下知識(shí): 1、高效的結(jié)構(gòu)設(shè)計(jì)。 2、用NAS搜索輕量級(jí)網(wǎng)絡(luò)。 3、數(shù)據(jù)高效的模型壓縮。 4、1bit量化。 課程大綱 第1章 能耗高效的深度學(xué)習(xí)的背景 第2章 高效的神經(jīng)元和結(jié)構(gòu)設(shè)計(jì) 第3章 基于NAS的輕量級(jí)神經(jīng)網(wǎng)絡(luò) 第4章來(lái)自:百科
- 深度學(xué)習(xí)融合的幾種方式 更多內(nèi)容
-
云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科更好的訓(xùn)練效果。 本次訓(xùn)練所使用的經(jīng)過(guò)數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類(lèi)等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過(guò)人工神經(jīng)網(wǎng)絡(luò)來(lái)提取特征,不同層的輸出常被視為神經(jīng)網(wǎng)絡(luò)提取出的不同尺度的特征,上一層的輸出來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣(mài)機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科將源端MongoDB業(yè)務(wù)搬遷至華為云 DDS 的幾種方式 將源端MongoDB業(yè)務(wù)搬遷至華為云DDS的幾種方式 時(shí)間:2021-04-28 15:29:02 云圖說(shuō) 文檔數(shù)據(jù)庫(kù) MongoDB遷移 如果您因業(yè)務(wù)調(diào)整或需要使用華為云文檔數(shù)據(jù)庫(kù)DDS特性功能時(shí),可以通過(guò)數(shù)據(jù)遷移功能將原有MongoDB數(shù)據(jù)庫(kù)的數(shù)據(jù)遷移至華為云文檔數(shù)據(jù)庫(kù)。來(lái)自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科業(yè)享受數(shù)字技術(shù)紅利,全面推動(dòng)數(shù)實(shí)融合加速演進(jìn)。 產(chǎn)品全面升級(jí),讓企業(yè)數(shù)字賦能增效 對(duì)實(shí)體經(jīng)濟(jì)而言,實(shí)現(xiàn)全面數(shù)字化也是一個(gè)學(xué)習(xí)、創(chuàng)新、提高的過(guò)程,需要大量的投入,消費(fèi)者對(duì)服務(wù)質(zhì)量的要求已經(jīng)不分線(xiàn)上線(xiàn)下,高標(biāo)準(zhǔn)成為對(duì)所有企業(yè)的、自然的,發(fā)自消費(fèi)者內(nèi)心的要求。為此,華為828 B2B企來(lái)自:百科討重實(shí)踐、好應(yīng)用、端云協(xié)同的全方位專(zhuān)業(yè)人才培養(yǎng)方案究竟如何實(shí)現(xiàn)。 關(guān)注本次直播,您將了解到: 1、產(chǎn)教融合模式下的AI高校學(xué)科建設(shè)課程體系如何規(guī)劃? 2、支撐全生命周期的教學(xué)過(guò)程的專(zhuān)業(yè)平臺(tái)如何搭建? 3、怎樣實(shí)現(xiàn)在線(xiàn)學(xué)習(xí)管理、實(shí)踐教學(xué)管理、實(shí)驗(yàn)資源調(diào)度的統(tǒng)一? 4、為什么要基于ModelArts來(lái)搭建AI實(shí)驗(yàn)室?來(lái)自:云商店和可控性的降低,在使用上的質(zhì)量也是無(wú)法保障的。 融合 CDN 就相當(dāng)于是通過(guò)技術(shù)手段融合目前優(yōu)質(zhì)的云廠(chǎng)商的資源,或者再結(jié)合上自有CDN資源,打破單個(gè)CDN廠(chǎng)商的節(jié)點(diǎn)資源以及調(diào)度能力,突破地域時(shí)間以及不同運(yùn)營(yíng)商的限制,通過(guò)強(qiáng)大的智能調(diào)度策略來(lái)綜合利用上述資源來(lái)解決實(shí)際場(chǎng)景中的問(wèn)題,可以來(lái)自:百科88個(gè)值,取其中的最大值作為計(jì)費(fèi)帶寬。帶寬費(fèi)用通常以Mbps為單位計(jì)費(fèi),用戶(hù)所需的帶寬越大,費(fèi)用越高。 月結(jié)95峰值帶寬計(jì)費(fèi):在一個(gè)自然月內(nèi),將每個(gè)有效日的所有峰值帶寬的統(tǒng)計(jì)點(diǎn)進(jìn)行排序,去掉數(shù)值最高的5%的統(tǒng)計(jì)點(diǎn),取剩下的數(shù)值最高統(tǒng)計(jì)點(diǎn)為計(jì)費(fèi)點(diǎn),再根據(jù)合同約定的單價(jià)計(jì)費(fèi)。 日峰值來(lái)自:百科