- 深度學(xué)習(xí)腦電波信號(hào)時(shí)序預(yù)測(cè) 內(nèi)容精選 換一換
-
來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類(lèi)型以及深度學(xué)習(xí)工程中常見(jiàn)的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科
- 深度學(xué)習(xí)腦電波信號(hào)時(shí)序預(yù)測(cè) 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來(lái)自:百科從MindSpore手寫(xiě)數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 從MindSpore手寫(xiě)數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 時(shí)間:2020-11-23 16:08:48 深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)分支之一,應(yīng)用日益廣泛。 語(yǔ)音識(shí)別 、自動(dòng) 機(jī)器翻譯 、即時(shí)視覺(jué)翻譯、刷臉支付、人臉考勤……不知不覺(jué),深度學(xué)習(xí)已經(jīng)滲入到我們生活中的每個(gè)來(lái)自:百科
- 深度學(xué)習(xí)腦電波信號(hào)時(shí)序預(yù)測(cè) 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣(mài)機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科主流時(shí)序數(shù)據(jù)庫(kù)在線體驗(yàn) 主流時(shí)序數(shù)據(jù)庫(kù)在線體驗(yàn) 如何十分鐘快速上手時(shí)序數(shù)據(jù)庫(kù)?主流時(shí)序數(shù)據(jù)庫(kù)在線獲取。核心代碼,包括集群功能全部開(kāi)源。針對(duì)物聯(lián)網(wǎng)、車(chē)聯(lián)網(wǎng)、工業(yè)互聯(lián)網(wǎng)、IT運(yùn)維等設(shè)計(jì)和優(yōu)化的大數(shù)據(jù)平臺(tái)???0倍以上的時(shí)序數(shù)據(jù)庫(kù)功能,提供緩存、數(shù)據(jù)訂閱、流式計(jì)算等功能,最大程度減少研發(fā)和運(yùn)維的復(fù)雜度。來(lái)自:專(zhuān)題、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科幫助文檔 GaussDB 時(shí)序引擎 當(dāng)前特性是實(shí)驗(yàn)室特性,使用時(shí)請(qǐng)聯(lián)系華為工程師提供技術(shù)支持。 enable_tsdb 參數(shù)說(shuō)明:是否開(kāi)啟時(shí)序數(shù)據(jù)庫(kù)特性。 該參數(shù)屬于POSTMASTER類(lèi)型參數(shù),請(qǐng)參考表1中對(duì)應(yīng)設(shè)置方法進(jìn)行設(shè)置。 取值范圍:布爾型 on:表示打開(kāi)時(shí)序數(shù)據(jù)庫(kù)特性功能。 off:表示關(guān)閉時(shí)序數(shù)據(jù)庫(kù)特性功能。來(lái)自:專(zhuān)題TDengine時(shí)序數(shù)據(jù)庫(kù)的優(yōu)勢(shì) TDengine時(shí)序數(shù)據(jù)庫(kù)的優(yōu)勢(shì) TDengine時(shí)序數(shù)據(jù)庫(kù)的優(yōu)勢(shì),如何十分鐘快速上手時(shí)序數(shù)據(jù)庫(kù)?核心代碼,包括集群功能全部開(kāi)源。專(zhuān)為物聯(lián)網(wǎng)時(shí)序大數(shù)據(jù)設(shè)計(jì)和優(yōu)化的存儲(chǔ)計(jì)算引擎。TDengine核心為超高性能的時(shí)序數(shù)據(jù)庫(kù),同時(shí)提供緩存、數(shù)據(jù)訂閱、流來(lái)自:專(zhuān)題免費(fèi)時(shí)序數(shù)據(jù)庫(kù)在線體驗(yàn) 免費(fèi)時(shí)序數(shù)據(jù)庫(kù)在線體驗(yàn) 如何十分鐘快速上手時(shí)序數(shù)據(jù)庫(kù)?免費(fèi)的時(shí)序數(shù)據(jù)庫(kù)在線獲取。核心代碼,包括集群功能全部開(kāi)源。針對(duì)物聯(lián)網(wǎng)、車(chē)聯(lián)網(wǎng)、工業(yè)互聯(lián)網(wǎng)、IT運(yùn)維等設(shè)計(jì)和優(yōu)化的大數(shù)據(jù)平臺(tái)???0倍以上的時(shí)序數(shù)據(jù)庫(kù)功能,提供緩存、數(shù)據(jù)訂閱、流式計(jì)算等功能,最大程度減少研發(fā)和運(yùn)維的復(fù)雜度。來(lái)自:專(zhuān)題法等,實(shí)現(xiàn)點(diǎn)-線-面信號(hào)配時(shí)優(yōu)化,提升交通效率,保障通行 區(qū)域聯(lián)動(dòng)優(yōu)化:從單路口信號(hào)燈控制、干線協(xié)調(diào)優(yōu)化,到區(qū)域內(nèi)多個(gè)相鄰路口協(xié)同優(yōu)化,覆蓋點(diǎn)-線-面,實(shí)現(xiàn)區(qū)域內(nèi)通行能力全局最優(yōu) 精細(xì)化時(shí)段劃分:基于早晚高峰和平峰期不同時(shí)間段交通特點(diǎn)劃分時(shí)段,提供差異化信號(hào)配時(shí),7*24小時(shí)全天候運(yùn)行來(lái)自:百科15:54:18 機(jī)器學(xué)習(xí)常見(jiàn)的分類(lèi)有3種: 監(jiān)督學(xué)習(xí):利用一組已知類(lèi)別的樣本調(diào)整分類(lèi)器的參數(shù),使其達(dá)到所要求性能的過(guò)程,也稱(chēng)為監(jiān)督訓(xùn)練或有教師學(xué)習(xí)。常見(jiàn)的有回歸和分類(lèi)。 非監(jiān)督學(xué)習(xí):在未加標(biāo)簽的數(shù)據(jù)中,試圖找到隱藏的結(jié)構(gòu)。常見(jiàn)的有聚類(lèi)。 強(qiáng)化學(xué)習(xí):智能系統(tǒng)從環(huán)境到行為映射的學(xué)習(xí),以使獎(jiǎng)勵(lì)信號(hào)(強(qiáng)化信號(hào))函數(shù)值最大。來(lái)自:百科自適應(yīng)算法:當(dāng)出現(xiàn)過(guò)多告警時(shí),自動(dòng)調(diào)整算法參數(shù)抑制告警。 毛刺信號(hào)自動(dòng)過(guò)濾:自動(dòng)過(guò)濾掉偶然出現(xiàn)離散的毛刺信號(hào),避免誤報(bào)。 圖1運(yùn)維指標(biāo)智能分析 巡檢與問(wèn)題定界 日常運(yùn)維中,遇到異常難定位、日志難獲取等問(wèn)題,需要一個(gè)監(jiān)控平臺(tái)對(duì)資源、日志、應(yīng)用性能進(jìn)行全方位的監(jiān)控。 AOM 深度對(duì)接應(yīng)用服務(wù),一站式收集基礎(chǔ)設(shè)施、來(lái)自:百科維人員識(shí)別異常,告警策略設(shè)置簡(jiǎn)單,無(wú)需機(jī)器學(xué)習(xí)知識(shí)背景。 采用多維時(shí)序預(yù)測(cè)算法,利用多指標(biāo)間關(guān)聯(lián)關(guān)系提高預(yù)測(cè)準(zhǔn)確度,相比傳統(tǒng)預(yù)測(cè)算法準(zhǔn)確度提升50%,訓(xùn)練及預(yù)測(cè)時(shí)間從幾小時(shí)縮短到幾分鐘,可應(yīng)用于實(shí)時(shí)預(yù)測(cè)場(chǎng)景 低成本存儲(chǔ) 自適應(yīng)壓縮算法、自動(dòng)冷熱分級(jí)存儲(chǔ),相同數(shù)據(jù)量下存儲(chǔ)成本僅有關(guān)系型數(shù)據(jù)庫(kù)的1/10來(lái)自:專(zhuān)題其次,物聯(lián)網(wǎng)數(shù)據(jù)處理的關(guān)鍵是做好對(duì)時(shí)序數(shù)據(jù)的處理。 幾乎所有的物聯(lián)網(wǎng)數(shù)據(jù)都是時(shí)序數(shù)據(jù)。時(shí)序數(shù)據(jù)具備時(shí)間戳(timestamp)、隨時(shí)間變化的數(shù)值(fields)、附加信息(tags)、度量(Measurement)四個(gè)關(guān)鍵信息,同時(shí)采樣周期可能非常頻繁,有些甚至可達(dá)到毫秒級(jí)。 根據(jù)時(shí)序數(shù)據(jù)的特點(diǎn),做好時(shí)序數(shù)據(jù)處理需具備以下幾個(gè)關(guān)鍵點(diǎn):來(lái)自:百科自適應(yīng)算法:當(dāng)出現(xiàn)過(guò)多告警時(shí),自動(dòng)調(diào)整算法參數(shù)抑制告警。 毛刺信號(hào)自動(dòng)過(guò)濾:自動(dòng)過(guò)濾掉偶然出現(xiàn)離散的毛刺信號(hào),避免誤報(bào)。 巡檢與問(wèn)題定界 日常運(yùn)維中,遇到異常難定位、日志難獲取等問(wèn)題,需要一個(gè)監(jiān)控平臺(tái)對(duì)資源、日志、應(yīng)用性能進(jìn)行全方位的監(jiān)控。 AOM深度對(duì)接應(yīng)用服務(wù),一站式收集基礎(chǔ)設(shè)施、中間件和應(yīng)用來(lái)自:百科其次,物聯(lián)網(wǎng)數(shù)據(jù)處理的關(guān)鍵是做好對(duì)時(shí)序數(shù)據(jù)的處理。 幾乎所有的物聯(lián)網(wǎng)數(shù)據(jù)都是時(shí)序數(shù)據(jù)。時(shí)序數(shù)據(jù)具備時(shí)間戳(timestamp)、隨時(shí)間變化的數(shù)值(fields)、附加信息(tags)、度量(Measurement)四個(gè)關(guān)鍵信息,同時(shí)采樣周期可能非常頻繁,有些甚至可達(dá)到毫秒級(jí)。 根據(jù)時(shí)序數(shù)據(jù)的特點(diǎn),做好時(shí)序數(shù)據(jù)處理需具備以下幾個(gè)關(guān)鍵點(diǎn):來(lái)自:百科時(shí)序數(shù)據(jù)庫(kù)GeminiDB Influx接口 時(shí)序數(shù)據(jù)庫(kù)GeminiDB Influx接口 是一款基于華為自研的計(jì)算存儲(chǔ)分離架構(gòu),兼容InfluxDB生態(tài)的云原生NoSQL時(shí)序數(shù)據(jù)庫(kù)。本文問(wèn)您介紹influx場(chǎng)景的時(shí)序數(shù)據(jù)庫(kù)的優(yōu)勢(shì)、時(shí)序數(shù)據(jù)庫(kù)常見(jiàn)問(wèn)題等內(nèi)容 產(chǎn)品詳情 立即使用 時(shí)序數(shù)據(jù)庫(kù)GeminiDB來(lái)自:專(zhuān)題
- 時(shí)序預(yù)測(cè)算法初探:基于機(jī)器學(xué)習(xí)的時(shí)序預(yù)測(cè)算法(1)
- 時(shí)序預(yù)測(cè)算法初探:基于機(jī)器學(xué)習(xí)的時(shí)序預(yù)測(cè)算法(2)
- 使用時(shí)序預(yù)測(cè)算法實(shí)現(xiàn)訪問(wèn)流量預(yù)測(cè)
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 預(yù)測(cè)工資——線性回歸
- 深度學(xué)習(xí)案例分享 | 房?jī)r(jià)預(yù)測(cè) - PyTorch 實(shí)現(xiàn)
- 深度學(xué)習(xí)—線性回歸預(yù)測(cè)銷(xiāo)售額
- 【時(shí)序預(yù)測(cè)】之水質(zhì)凈化廠工藝控制-曝氣量預(yù)測(cè)
- 使用深度學(xué)習(xí)進(jìn)行油藏預(yù)測(cè)和優(yōu)化
- 體驗(yàn)華為云AI市場(chǎng)-時(shí)序預(yù)測(cè)
- 《深度剖析:深度學(xué)習(xí)算法如何賦能腦機(jī)接口信號(hào)處理》
- 開(kāi)發(fā)深度學(xué)習(xí)模型
- 使用時(shí)序預(yù)測(cè)算法實(shí)現(xiàn)訪問(wèn)流量預(yù)測(cè)
- 盤(pán)古統(tǒng)一編碼時(shí)序預(yù)測(cè)回歸大模型
- 使用自動(dòng)學(xué)習(xí)實(shí)現(xiàn)預(yù)測(cè)分析
- 盤(pán)古統(tǒng)一編碼時(shí)序預(yù)測(cè)分類(lèi)大模型
- 創(chuàng)建預(yù)測(cè)大模型訓(xùn)練任務(wù)
- 預(yù)測(cè)大模型訓(xùn)練流程與選擇建議
- 大模型開(kāi)發(fā)基本概念
- 時(shí)序分析
- 時(shí)序洞察