- 深度學(xué)習(xí)模型可視化數(shù)據(jù)存儲(chǔ) 內(nèi)容精選 換一換
-
來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來(lái)自:百科
- 深度學(xué)習(xí)模型可視化數(shù)據(jù)存儲(chǔ) 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來(lái)自:百科何使用深度學(xué)習(xí)框架MindSpore進(jìn)行模型開發(fā)與訓(xùn)練?又如何在ModelArts平臺(tái)訓(xùn)練一個(gè)可以用于識(shí)別手寫數(shù)字的模型呢?讓我們來(lái)一探究竟吧。 數(shù)據(jù)集的選擇與準(zhǔn)備 機(jī)器學(xué)習(xí)中的傳統(tǒng)機(jī)器學(xué)習(xí)和深度學(xué)習(xí)都是數(shù)據(jù)驅(qū)動(dòng)的研究領(lǐng)域,需要基于大量的歷史數(shù)據(jù)對(duì)模型進(jìn)行訓(xùn)練,再使用模型對(duì)新的數(shù)來(lái)自:百科
- 深度學(xué)習(xí)模型可視化數(shù)據(jù)存儲(chǔ) 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的 語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科并實(shí)現(xiàn)售賣機(jī)的智能化運(yùn)營(yíng),是一個(gè)貫穿數(shù)據(jù)開發(fā)、數(shù)據(jù)采集、數(shù)據(jù)挖掘應(yīng)用的完整項(xiàng)目。 目標(biāo)學(xué)員 希望了解AI與IoT技術(shù)結(jié)合場(chǎng)景實(shí)現(xiàn)方法并掌握其開發(fā)能力的人員。 課程目標(biāo) 通過學(xué)習(xí)本課程,學(xué)員可以對(duì)設(shè)備接入IoT平臺(tái)上報(bào)數(shù)據(jù),基于AI對(duì)設(shè)備上報(bào)數(shù)據(jù)進(jìn)行分析預(yù)測(cè)的實(shí)際應(yīng)用場(chǎng)景有一個(gè)了解。來(lái)自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過程。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科行存儲(chǔ)是指將表按行存儲(chǔ)到硬盤分區(qū)上,列存儲(chǔ)是指將表按列存儲(chǔ)到硬盤分區(qū)上。默認(rèn)情況下,創(chuàng)建的表為行存儲(chǔ)。行存儲(chǔ)和列存儲(chǔ)的差異請(qǐng)參見下圖。 圖中,左上為行存表,右上為行存表在硬盤上的存儲(chǔ)方式。左下為列存表,右下為列存表在硬盤上的存儲(chǔ)方式。 云數(shù)據(jù)庫(kù) GaussDB 行、列存儲(chǔ)有如下優(yōu)缺點(diǎn): 存儲(chǔ)模型 優(yōu)點(diǎn)來(lái)自:專題數(shù)據(jù)庫(kù)概念模型實(shí)際上是現(xiàn)實(shí)世界到機(jī)器世界的一個(gè)中間層次。數(shù)據(jù)庫(kù)概念模型用于信息世界的建模,是現(xiàn)實(shí)世界到信息世界的第一層抽象,是數(shù)據(jù)庫(kù)設(shè)計(jì)人員進(jìn)行數(shù)據(jù)庫(kù)設(shè)計(jì)的有力工具,也是數(shù)據(jù)庫(kù)設(shè)計(jì)人員和用戶之間進(jìn)行交流的語(yǔ)言。建立數(shù)據(jù)概念模型,就是從數(shù)據(jù)的觀點(diǎn)出發(fā),觀察系統(tǒng)中數(shù)據(jù)的采集、傳輸、處理、存儲(chǔ)、輸出等,經(jīng)過分析、總結(jié)來(lái)自:百科GaussDB數(shù)據(jù)庫(kù)備份與恢復(fù)_華為高斯數(shù)據(jù)庫(kù)_新建高斯數(shù)據(jù)庫(kù)_高斯語(yǔ)法 華為云分布式關(guān)系型數(shù)據(jù)庫(kù)是什么 華為數(shù)據(jù)庫(kù)GaussDB_GaussDB數(shù)據(jù)庫(kù)的優(yōu)點(diǎn)_【免費(fèi)】_GaussDB分布式數(shù)據(jù)庫(kù)_數(shù)據(jù)庫(kù)平臺(tái) 關(guān)系數(shù)據(jù)庫(kù)管理系統(tǒng)_數(shù)據(jù)庫(kù)管理系統(tǒng)、數(shù)據(jù)庫(kù)應(yīng)用 數(shù)據(jù)庫(kù)軟件免費(fèi)版 云數(shù)據(jù)庫(kù)免費(fèi)_云數(shù)據(jù)庫(kù)免費(fèi)試用 免費(fèi)數(shù)據(jù)庫(kù)GaussDB來(lái)自:專題組件化拖拽式編排,輕松上手 大數(shù)據(jù)可視化平臺(tái)功能說(shuō)明 數(shù)據(jù)連接管理 創(chuàng)建數(shù)據(jù)連接,提供數(shù)據(jù)大屏所需動(dòng)態(tài)數(shù)據(jù) 創(chuàng)建數(shù)據(jù)連接,提供數(shù)據(jù)大屏所需動(dòng)態(tài)數(shù)據(jù) 數(shù)據(jù)大屏管理 基于多種場(chǎng)景模板創(chuàng)建管理您的數(shù)據(jù)大屏 基于多種場(chǎng)景模板創(chuàng)建管理您的數(shù)據(jù)大屏 可視化編輯器 畫布、可視化界面編輯器和所見及所得的來(lái)自:專題無(wú)縫集成華為云 數(shù)據(jù)倉(cāng)庫(kù) 服務(wù)、數(shù)據(jù)湖探索、關(guān)系型數(shù)據(jù)庫(kù)、對(duì)象存儲(chǔ)服務(wù)等,支持本地 CS V、在線API及企業(yè)內(nèi)部私有云數(shù)據(jù); 數(shù)據(jù)可視化 DLV 數(shù)據(jù)可視化服務(wù)(Data Lake Visualization)是一站式數(shù)據(jù)可視化平臺(tái),適配云上云下多種數(shù)據(jù)源,提供豐富多樣的2D、3D可視化組件,采用拖拽式自由布來(lái)自:百科云知識(shí) 數(shù)據(jù)模型類型的對(duì)比 數(shù)據(jù)模型類型的對(duì)比 時(shí)間:2021-05-21 11:05:46 數(shù)據(jù)庫(kù) 數(shù)據(jù)系統(tǒng) 數(shù)據(jù)管理 數(shù)據(jù)發(fā)展過程中產(chǎn)生過三種基本的數(shù)據(jù)模型:層次模型、網(wǎng)狀模型和關(guān)系模型。本文主要從數(shù)據(jù)結(jié)構(gòu)、數(shù)據(jù)操作、數(shù)據(jù)聯(lián)系及優(yōu)缺點(diǎn)幾個(gè)方面進(jìn)行對(duì)比分析。 層次模型和網(wǎng)狀模型來(lái)自:百科華為云計(jì)算 云知識(shí) 數(shù)據(jù)模型類型有哪些 數(shù)據(jù)模型類型有哪些 時(shí)間:2021-05-21 10:15:21 數(shù)據(jù)庫(kù) 數(shù)據(jù)系統(tǒng) 數(shù)據(jù)管理 數(shù)據(jù)發(fā)展過程中產(chǎn)生過三種基本的數(shù)據(jù)模型:層次模型、網(wǎng)狀模型和關(guān)系模型。 1、層次模型的數(shù)據(jù)結(jié)構(gòu)就是一棵樹形結(jié)構(gòu),目前還在使用的層次模型的一個(gè)實(shí)際案例就來(lái)自:百科華為云計(jì)算 云知識(shí) 數(shù)據(jù)庫(kù)進(jìn)階學(xué)習(xí) 數(shù)據(jù)庫(kù)進(jìn)階學(xué)習(xí) 時(shí)間:2020-12-16 09:52:25 云計(jì)算是未來(lái)的方向,云數(shù)據(jù)庫(kù)是解決方案的核心,學(xué)習(xí)本課程掌握華為云數(shù)據(jù)庫(kù)的運(yùn)維管理,數(shù)據(jù)庫(kù)遷移和根據(jù)業(yè)務(wù)場(chǎng)景出具解決方案的能力。 課程簡(jiǎn)介 課程覆蓋了華為云對(duì)各行業(yè)解決方案、數(shù)據(jù)庫(kù)遷移方案和來(lái)自:百科一站式數(shù)據(jù)存儲(chǔ)管理 一站式數(shù)據(jù)存儲(chǔ)管理 對(duì)象存儲(chǔ)服務(wù)(Object Storage Service, OBS )是一個(gè)基于對(duì)象的海量存儲(chǔ)服務(wù),為客戶提供海量、安全、高可靠、低成本的數(shù)據(jù)存儲(chǔ)能力。到目前為止,OBS支持4種存儲(chǔ)類別:標(biāo)準(zhǔn)存儲(chǔ)、低頻訪問存儲(chǔ)、歸檔存儲(chǔ)、深度歸檔存儲(chǔ)(受限公來(lái)自:專題數(shù)據(jù)庫(kù)登錄入口_華為GaussDB分布式數(shù)據(jù)庫(kù)免費(fèi)領(lǐng)取 MySQL云數(shù)據(jù)庫(kù) 免費(fèi)數(shù)據(jù)庫(kù) 關(guān)系數(shù)據(jù)庫(kù)管理系統(tǒng)_數(shù)據(jù)庫(kù)管理系統(tǒng)、數(shù)據(jù)庫(kù)應(yīng)用 數(shù)據(jù)庫(kù)軟件免費(fèi)版 云數(shù)據(jù)庫(kù)免費(fèi)_云數(shù)據(jù)庫(kù)免費(fèi)試用 MySQL數(shù)據(jù)庫(kù)免費(fèi)嗎_MySQL數(shù)據(jù)庫(kù) 免費(fèi)試用 MySQL數(shù)據(jù)庫(kù)入門 免費(fèi)云數(shù)據(jù)庫(kù) 數(shù)據(jù)庫(kù)有哪些 云數(shù)據(jù)庫(kù)和普通數(shù)據(jù)庫(kù) 免費(fèi)數(shù)據(jù)庫(kù)服務(wù)器_免費(fèi)數(shù)據(jù)庫(kù)有哪些來(lái)自:專題
- 《Keras深度學(xué)習(xí)實(shí)戰(zhàn)》—3.3 模型可視化
- 《深度探秘:PaddlePaddle中利用MySQL存儲(chǔ)模型訓(xùn)練數(shù)據(jù)》
- 深度學(xué)習(xí)模型編譯技術(shù)
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:智能數(shù)據(jù)隱私保護(hù)
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- 深度學(xué)習(xí)-通用模型調(diào)試技巧
- 利用深度學(xué)習(xí)建立流失模型
- 深度學(xué)習(xí)模型在油田數(shù)據(jù)挖掘中的應(yīng)用
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:Transformer模型
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:遷移學(xué)習(xí)與預(yù)訓(xùn)練模型