- 深度學(xué)習(xí)框架開發(fā) 加速算子庫 內(nèi)容精選 換一換
-
來自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科
- 深度學(xué)習(xí)框架開發(fā) 加速算子庫 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái) 搭來自:百科在L1芯片使能層中,以芯片的張量加速引擎為核心,支持離線模型的加速計(jì)算。張量加速引擎中包含了標(biāo)準(zhǔn)算子加速庫,這些算子經(jīng)過優(yōu)化后具有良好性能。算子在執(zhí)行過程中與位于算子加速庫上層的運(yùn)行管理器進(jìn)行交互,同時(shí)運(yùn)行管理器與L2執(zhí)行框架層進(jìn)行通信,提供標(biāo)準(zhǔn)算子加速庫接口給L2執(zhí)行框架層調(diào)用,讓具體網(wǎng)絡(luò)模來自:百科
- 深度學(xué)習(xí)框架開發(fā) 加速算子庫 更多內(nèi)容
-
BE算子來構(gòu)建各種神經(jīng)網(wǎng)絡(luò)模型。同時(shí),TBE對(duì)算子也提供了封裝調(diào)用能力。在TBE中有一個(gè)優(yōu)化過的神經(jīng)網(wǎng)絡(luò)TBE標(biāo)準(zhǔn)算子庫,開發(fā)者可以直接利用標(biāo)準(zhǔn)算子庫中的算子實(shí)現(xiàn)高性能的神經(jīng)網(wǎng)絡(luò)計(jì)算。除此之外,TBE也提供了TBE算子的融合能力,為神經(jīng)網(wǎng)絡(luò)的優(yōu)化開辟一條獨(dú)特的路徑。 張量加速引擎TBE的三種應(yīng)用場(chǎng)景來自:百科文檔導(dǎo)讀 文檔導(dǎo)讀 華為企業(yè)人工智能高級(jí)開發(fā)者培訓(xùn):培訓(xùn)內(nèi)容 目標(biāo)讀者 目標(biāo)讀者 目標(biāo)讀者 應(yīng)用開發(fā)簡(jiǎn)介:Spark簡(jiǎn)介 應(yīng)用開發(fā)簡(jiǎn)介:Spark簡(jiǎn)介 應(yīng)用開發(fā)簡(jiǎn)介:Spark簡(jiǎn)介 應(yīng)用開發(fā)簡(jiǎn)介:Spark簡(jiǎn)介 職業(yè)認(rèn)證考試的學(xué)習(xí)方法 Spark應(yīng)用開發(fā)簡(jiǎn)介:Spark簡(jiǎn)介 彈性伸縮概述:組件介紹來自:百科
- 一文了解AOL算子加速庫
- MindSpore學(xué)習(xí)之算子開發(fā)
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.2 深度學(xué)習(xí)框架
- 深度學(xué)習(xí)框架指南
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 深度學(xué)習(xí)框架(PyTorch)
- 昇騰CANN《AOL算子加速庫文檔》上新,快來昇騰社區(qū)文檔中心體驗(yàn)吧!
- Ascend C算子加速:優(yōu)化與創(chuàng)新
- 昇騰AI異構(gòu)計(jì)算架構(gòu)CANN——高效使能AI原生創(chuàng)新
- 【TBE算子開發(fā)】TIk算子開發(fā)總結(jié)
- PyTorch深度學(xué)習(xí)領(lǐng)域框架