- 深度學(xué)習(xí)框架 性能 內(nèi)容精選 換一換
-
工具包。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、掌握強(qiáng)數(shù)據(jù)分析工具pandas、numpy的使用。 2、掌握?qǐng)D像處理工具pillow和scikit-image的使用。 3、掌握強(qiáng)機(jī)器學(xué)習(xí)工具scikit-learn的使用。 4、掌握深度學(xué)習(xí)框架keras、TensorFlow和pytorch的使用。來(lái)自:百科stKit大數(shù)據(jù)使能套件提供了Spark性能改進(jìn)的各種優(yōu)化技術(shù),包括優(yōu)化的機(jī)器學(xué)習(xí)算法,從而實(shí)現(xiàn)Spark性能倍級(jí)提升。 內(nèi)容大綱: 1. 大數(shù)據(jù)機(jī)器學(xué)習(xí)算法發(fā)展歷程; 2. 機(jī)器學(xué)習(xí)算法優(yōu)化的技術(shù)挑戰(zhàn); 3. 鯤鵬BoostKit機(jī)器學(xué)習(xí)算法原理創(chuàng)新; 4. 面向鯤鵬的算法親和優(yōu)化實(shí)踐;來(lái)自:百科
- 深度學(xué)習(xí)框架 性能 相關(guān)內(nèi)容
-
完善的生態(tài)環(huán)境,全面支持多種GPU應(yīng)用程序、深度學(xué)習(xí)框架。G系列支持OpenGL、DirectX;P系列支持CUDA、OpenCL 簡(jiǎn)單易用 一鍵式獲取各類圖形工作站、超算應(yīng)用和深度學(xué)習(xí)框架、計(jì)算集群,讓您真正聚焦于核心業(yè)務(wù) 一鍵式獲取各類圖形工作站、超算應(yīng)用和深度學(xué)習(xí)框架、計(jì)算集群,讓您真正聚焦于核心業(yè)務(wù)來(lái)自:專題華為云計(jì)算 云知識(shí) 什么是 數(shù)據(jù)治理 組織架構(gòu)框架 什么是數(shù)據(jù)治理組織架構(gòu)框架 時(shí)間:2020-09-09 10:36:02 數(shù)據(jù)治理可以采用集中化(全時(shí)投入)和虛擬化(部分投入)混合的組織模式。結(jié)合具備專業(yè)技能的專職數(shù)據(jù)治理人員和熟悉業(yè)務(wù)和IT系統(tǒng)的已有人員,在運(yùn)作上實(shí)現(xiàn)數(shù)據(jù)治理團(tuán)來(lái)自:百科
- 深度學(xué)習(xí)框架 性能 更多內(nèi)容
-
GaussDB 性能 GaussDB性能 云數(shù)據(jù)庫(kù) GaussDB是華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)據(jù)庫(kù)。具備企業(yè)級(jí)復(fù)雜事務(wù)混合負(fù)載能力,同時(shí)支持分布式事務(wù),同城跨AZ部署,數(shù)據(jù)0丟失,支持1000+節(jié)點(diǎn)的擴(kuò)展能力,PB級(jí)海量存儲(chǔ)。本文介紹 GaussDB數(shù)據(jù)庫(kù) 產(chǎn)品性能。 云數(shù)據(jù)庫(kù)Ga來(lái)自:專題需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類 3. 機(jī)器學(xué)習(xí)的整體流程來(lái)自:百科
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.2 深度學(xué)習(xí)框架
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 深度學(xué)習(xí)框架(PyTorch)
- 深度學(xué)習(xí)框架指南
- PyTorch深度學(xué)習(xí)領(lǐng)域框架
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.3 本書(shū)涉及的深度學(xué)習(xí)框架
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.5 深度學(xué)習(xí)展望
- 初識(shí)深度學(xué)習(xí)推理框架 | 簡(jiǎn)記
- 針對(duì)深度學(xué)習(xí)框架版本的討論
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.4 優(yōu)化深度學(xué)習(xí)的方法
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——2TensorFlow深度學(xué)習(xí)框