- 深度學(xué)習(xí)高光譜融合 內(nèi)容精選 換一換
-
需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類(lèi) 3. 機(jī)器學(xué)習(xí)的整體流程來(lái)自:百科來(lái)自:百科
- 深度學(xué)習(xí)高光譜融合 相關(guān)內(nèi)容
-
著眼AI未來(lái),踐行產(chǎn)教融合直播回顧 著眼AI未來(lái),踐行產(chǎn)教融合直播回顧 時(shí)間:2021-03-22 17:33:34 云市場(chǎng) 嚴(yán)選商城 行業(yè)解決方案 教育 視頻直播 華為云云市場(chǎng)新生態(tài)系列直播丨第29期 華為云牽手知途教育,揭秘人工智能浪潮下科技與教育的深度融合 3月18日晚19:來(lái)自:云商店華為云計(jì)算 云知識(shí) GaussDB(DWS)應(yīng)用場(chǎng)景-大數(shù)據(jù)融合分析 GaussDB(DWS)應(yīng)用場(chǎng)景-大數(shù)據(jù)融合分析 時(shí)間:2021-06-17 12:52:17 數(shù)據(jù)庫(kù) GaussDB(DWS)在大數(shù)據(jù)融合分析的應(yīng)用如下圖所示。分析過(guò)程有如下的特點(diǎn): 統(tǒng)一分析入口:以Gaus來(lái)自:百科
- 深度學(xué)習(xí)高光譜融合 更多內(nèi)容
-
應(yīng)的推理框架才能真正實(shí)現(xiàn)AI與IoT設(shè)備的結(jié)合。 另外,目前深度學(xué)習(xí)雖然可以在很多領(lǐng)域超越傳統(tǒng)算法,不過(guò)真正用到實(shí)際產(chǎn)品中卻要面臨計(jì)算量大,內(nèi)存占用高,算法延時(shí)長(zhǎng)的問(wèn)題,而IoT設(shè)備又往往有算力低、內(nèi)存小及實(shí)時(shí)性要求高的特點(diǎn)。因此針對(duì)IoT資源受限的問(wèn)題,AI模型的壓縮及性能優(yōu)化是AI模型在部署過(guò)程中必須解決的難點(diǎn)。來(lái)自:百科被邀請(qǐng)人須在報(bào)名信息【備注欄】填寫(xiě)邀請(qǐng)人的華為云賬號(hào)。拉新活動(dòng)具體規(guī)則及更多驚喜,請(qǐng)點(diǎn)擊前往 【數(shù)據(jù)分析賽·賽題說(shuō)明】 參賽者須根據(jù)給定的三個(gè)方向“交通流量預(yù)測(cè)”、“水質(zhì)高光譜污染物分析”和“貨柜車(chē)到港預(yù)測(cè)分析”,提交整體解決方案和數(shù)據(jù)分析模型算法。 分析賽賽題必須使用華為云ModelArts平臺(tái)進(jìn)行作品開(kāi)發(fā)和驗(yàn)證。來(lái)自:百科云知識(shí) 領(lǐng)取/購(gòu)買(mǎi)優(yōu)學(xué)院學(xué)習(xí)購(gòu)買(mǎi)學(xué)習(xí)卡常見(jiàn)問(wèn)題 領(lǐng)取/購(gòu)買(mǎi)優(yōu)學(xué)院學(xué)習(xí)購(gòu)買(mǎi)學(xué)習(xí)卡常見(jiàn)問(wèn)題 時(shí)間:2021-04-08 11:37:24 云市場(chǎng) 嚴(yán)選商城 行業(yè)解決方案 教育 使用指南 商品鏈接:優(yōu)學(xué)院平臺(tái);服務(wù)商:北京文華在線教育科技股份有限公司 雖然購(gòu)買(mǎi)學(xué)習(xí)卡的操作比較簡(jiǎn)單,但是同來(lái)自:云商店工程師、應(yīng)用開(kāi)發(fā)高級(jí)工程師、高校師生,學(xué)習(xí)完成可考取HCIP-IoT高級(jí)工程師認(rèn)證。 開(kāi)發(fā)者進(jìn)階課程 《深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā)》 本課程旨基于自動(dòng)售賣(mài)機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:專(zhuān)題云安全 學(xué)習(xí)入門(mén) 學(xué)課程、做實(shí)驗(yàn)、考認(rèn)證,云安全知識(shí)一手掌握 云安全產(chǎn)品 云安全知識(shí)圖譜 在線課程 01 初學(xué)者入門(mén)課程、開(kāi)發(fā)者進(jìn)階課程、合作伙伴賦能課程 初學(xué)者入門(mén)課程、開(kāi)發(fā)者進(jìn)階課程、合作伙伴賦能課程 動(dòng)手實(shí)驗(yàn) 02 動(dòng)手實(shí)驗(yàn)提供初級(jí)、中級(jí)在線實(shí)驗(yàn)學(xué)習(xí) 動(dòng)手實(shí)驗(yàn)提供初級(jí)、中級(jí)在線實(shí)驗(yàn)學(xué)習(xí)來(lái)自:專(zhuān)題云安全學(xué)習(xí)入門(mén) 學(xué)課程、做實(shí)驗(yàn)、考認(rèn)證,云安全知識(shí)一手掌握 云安全產(chǎn)品 云安全知識(shí)圖譜 在線課程 01 初學(xué)者入門(mén)課程、開(kāi)發(fā)者進(jìn)階課程、合作伙伴賦能課程 初學(xué)者入門(mén)課程、開(kāi)發(fā)者進(jìn)階課程、合作伙伴賦能課程 動(dòng)手實(shí)驗(yàn) 02 動(dòng)手實(shí)驗(yàn)提供初級(jí)、中級(jí)在線實(shí)驗(yàn)學(xué)習(xí) 動(dòng)手實(shí)驗(yàn)提供初級(jí)、中級(jí)在線實(shí)驗(yàn)學(xué)習(xí)來(lái)自:專(zhuān)題工程師、應(yīng)用開(kāi)發(fā)高級(jí)工程師、高校師生,學(xué)習(xí)完成可考取HCIP-IoT高級(jí)工程師認(rèn)證。 開(kāi)發(fā)者進(jìn)階課程 《深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā)》 本課程旨基于自動(dòng)售賣(mài)機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從物聯(lián)網(wǎng)平臺(tái)來(lái)自:專(zhuān)題學(xué)習(xí) 云數(shù)據(jù)庫(kù) GaussDB 學(xué)習(xí)云數(shù)據(jù)庫(kù)GaussDB 云數(shù)據(jù)庫(kù)GaussDB,華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)據(jù)庫(kù),具有高性能、高可用、高安全、低成本的特點(diǎn),企業(yè)核心數(shù)據(jù)上云信賴(lài)之選。如何快速學(xué)習(xí)和了解GaussDB呢? 云數(shù)據(jù)庫(kù)GaussDB,華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)來(lái)自:專(zhuān)題資源預(yù)測(cè)難,自建費(fèi)用高 渲染業(yè)務(wù)需求為波動(dòng)型曲線,業(yè)務(wù)閑暇時(shí),資源浪費(fèi);業(yè)務(wù)繁忙時(shí),資源不夠; 建設(shè)私有渲染農(nóng)場(chǎng)需要購(gòu)買(mǎi)大量的IT資源,成本高 渲染業(yè)務(wù)需求為波動(dòng)型曲線,業(yè)務(wù)閑暇時(shí),資源浪費(fèi);業(yè)務(wù)繁忙時(shí),資源不夠; 建設(shè)私有渲染農(nóng)場(chǎng)需要購(gòu)買(mǎi)大量的IT資源,成本高 渲染效率低 基于通來(lái)自:專(zhuān)題GA CS )能夠提供優(yōu)秀的浮點(diǎn)計(jì)算能力,從容應(yīng)對(duì)高實(shí)時(shí)、高并發(fā)的海量計(jì)算場(chǎng)景。P系列適合于深度學(xué)習(xí),科學(xué)計(jì)算,CAE等;G系列適合于3D動(dòng)畫(huà)渲染,CAD等 GPU加速云服務(wù)器(GPU Accelerated Cloud Server, GACS)能夠提供優(yōu)秀的浮點(diǎn)計(jì)算能力,從容應(yīng)對(duì)高實(shí)時(shí)、高并發(fā)的海量計(jì)算來(lái)自:專(zhuān)題文字識(shí)別全景實(shí)踐課 文字識(shí)別全景實(shí)踐課 時(shí)間:2020-12-09 10:36:44 華為云文字識(shí)別 OCR 服務(wù)融合深度學(xué)習(xí)及多種圖像處理技術(shù),提供豐富全面的文字識(shí)別服務(wù),具有精度高,穩(wěn)定性強(qiáng),適應(yīng)多種場(chǎng)景等特點(diǎn)。本次活動(dòng)采用直播教學(xué)+技術(shù)干貨形式,掃除OCR服務(wù)實(shí)際應(yīng)用的問(wèn)題,實(shí)現(xiàn)人人快速上手操作。來(lái)自:百科深度學(xué)習(xí)計(jì)算服務(wù)平臺(tái)是中科弘云面向有定制化AI需求的行業(yè)用戶(hù),推出的 AI開(kāi)發(fā)平臺(tái) ,提供從樣本標(biāo)注、模型訓(xùn)練、模型部署的一站式AI開(kāi)發(fā)能力,幫助用戶(hù)快速訓(xùn)練和部署模型,管理全周期AI工作流。平臺(tái)為開(kāi)發(fā)者設(shè)計(jì)了眾多可幫助降低開(kāi)發(fā)成本的開(kāi)發(fā)工具與框架,例如AI數(shù)據(jù)集、AI模型與算力等。來(lái)自:其他應(yīng)的推理框架才能真正實(shí)現(xiàn)AI與IoT設(shè)備的結(jié)合。 另外,目前深度學(xué)習(xí)雖然可以在很多領(lǐng)域超越傳統(tǒng)算法,不過(guò)真正用到實(shí)際產(chǎn)品中卻要面臨計(jì)算量大,內(nèi)存占用高,算法延時(shí)長(zhǎng)的問(wèn)題,而IoT設(shè)備又往往有算力低、內(nèi)存小及實(shí)時(shí)性要求高的特點(diǎn)。因此針對(duì)IoT資源受限的問(wèn)題,AI模型的壓縮及性能優(yōu)化是AI模型在部署過(guò)程中必須解決的難點(diǎn)。來(lái)自:百科造個(gè)性化自適應(yīng)學(xué)習(xí)平臺(tái),實(shí)現(xiàn)課內(nèi)學(xué)習(xí)向課外學(xué)習(xí)的延展,幫助每個(gè)學(xué)生實(shí)現(xiàn)彈性有效的針對(duì)性自主學(xué)習(xí); 區(qū)域網(wǎng)絡(luò)學(xué)習(xí)中心功能框架 (2)家庭教育 通過(guò)建設(shè)家庭教育平臺(tái),讓家長(zhǎng)通過(guò)家庭教育的系統(tǒng)學(xué)習(xí),擁有親子教育能力、自我管理能力、經(jīng)營(yíng)幸福家庭的能力。 (3)老年開(kāi)放學(xué)院 老年教育作為終來(lái)自:云商店華為云計(jì)算 云知識(shí) 什么是實(shí)時(shí)互動(dòng)學(xué)習(xí) 什么是實(shí)時(shí)互動(dòng)學(xué)習(xí) 時(shí)間:2021-03-30 10:05:42 5G 行業(yè)解決方案 實(shí)時(shí)互動(dòng)學(xué)習(xí)解決方案場(chǎng)景是華為云5G教育解決方案的應(yīng)用場(chǎng)景之一,實(shí)時(shí)互動(dòng)學(xué)習(xí)利用手機(jī),平板或?qū)S玫脑O(shè)備,使學(xué)生獲得一種立體生動(dòng)的強(qiáng)互動(dòng)高沉浸感體驗(yàn),對(duì)知識(shí)點(diǎn)有一個(gè)來(lái)自:百科軟件開(kāi)發(fā)學(xué)習(xí)入門(mén) 一站式在線學(xué)習(xí)、實(shí)驗(yàn)與考試,零基礎(chǔ)也可學(xué)習(xí)軟件開(kāi)發(fā)前沿技術(shù)知識(shí) 軟件開(kāi)發(fā)知識(shí)圖譜 在線課程 01 基礎(chǔ)編程、華為云開(kāi)發(fā)、CodeArts等相關(guān)在線課程 基礎(chǔ)編程、華為云開(kāi)發(fā)、CodeArts等相關(guān)在線課程 動(dòng)手實(shí)驗(yàn) 02 初級(jí)、中級(jí)在線動(dòng)手實(shí)驗(yàn),快速理解學(xué)習(xí)內(nèi)容來(lái)自:專(zhuān)題
- Wyvern's 龍女高光譜衛(wèi)星星座捕獲中分辨率(5.30 米)高光譜衛(wèi)星圖像
- AI助力垃圾分類(lèi)與回收的可行性研究:從算法到落地的深度解析
- MCP零基礎(chǔ)學(xué)習(xí)(6)|與大型語(yǔ)言模型(LLM)的深度融合
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.1.3 深度學(xué)習(xí)
- 基于稀疏表示的小波變換多光譜圖像融合算法matlab仿真
- 《深度剖析:鴻蒙系統(tǒng)下智能NPC與游戲劇情的深度融合》
- 深度學(xué)習(xí)
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.2 深度學(xué)習(xí)框架
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 深度學(xué)習(xí)框架(PyTorch)
- 《深度剖析:關(guān)聯(lián)規(guī)則挖掘與SQL的奇妙融合》