- 深度學(xué)習(xí)端到端 內(nèi)容精選 換一換
-
來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見(jiàn)的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科
- 深度學(xué)習(xí)端到端 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來(lái)自:百科像,完成特征空間到真實(shí)類別空間的映射,最終的圖像分類便是由全連接層完成的。有了這樣一個(gè)神經(jīng)網(wǎng)絡(luò)后,我們還需要用大量數(shù)據(jù)集對(duì)它進(jìn)行不斷地訓(xùn)練,才能對(duì)輸入數(shù)據(jù)有較為準(zhǔn)確的預(yù)測(cè)結(jié)果,這一過(guò)程便依賴于華為自研的深度學(xué)習(xí)框架MindSpore。 MindSpore的“學(xué)習(xí)”過(guò)程 MindS來(lái)自:百科
- 深度學(xué)習(xí)端到端 更多內(nèi)容
-
I模型從云上部署到端側(cè),為AI模型創(chuàng)造更多的應(yīng)用場(chǎng)景和產(chǎn)業(yè)價(jià)值。 課程簡(jiǎn)介 為了解決真實(shí)世界中的問(wèn)題,我們的深度學(xué)習(xí)算法需要巨量的數(shù)據(jù),同時(shí)也需要機(jī)器擁有處理龐大數(shù)據(jù)的能力,在現(xiàn)實(shí)世界中部署神經(jīng)網(wǎng)絡(luò)需要平衡效率和能耗以及成本的關(guān)系。本課程介紹了能耗高效的深度學(xué)習(xí)。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員了解如下知識(shí):來(lái)自:百科華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的 語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái) 搭建到智能算法來(lái)自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科華為云計(jì)算 云知識(shí) 數(shù)據(jù)庫(kù)客戶端工具介紹 數(shù)據(jù)庫(kù)客戶端工具介紹 時(shí)間:2021-05-31 18:05:12 數(shù)據(jù)庫(kù) 客戶端工具的存在主要是為了讓用戶更加便捷地連接數(shù)據(jù)庫(kù),對(duì)數(shù)據(jù)庫(kù)進(jìn)行各種操作和調(diào)試。 gsql: 向 GaussDB (DWS)提供在命令行運(yùn)行的交互式數(shù)據(jù)庫(kù)連接工具。來(lái)自:百科Studio為客戶提供了“深度學(xué)習(xí)+機(jī)器學(xué)習(xí)”的全場(chǎng)景AI開(kāi)發(fā)與應(yīng)用基礎(chǔ)設(shè)施服務(wù),可以滿足不同場(chǎng)景下的AI開(kāi)發(fā)需求。3. 端到端全棧AI開(kāi)發(fā)、優(yōu)化、推理部署能力:Apulis AI Studio提供了 數(shù)據(jù)管理 與處理、模型開(kāi)發(fā)與優(yōu)化、模型部署與應(yīng)用等端到端全棧AI開(kāi)發(fā)、優(yōu)化、推理部來(lái)自:專題
- 語(yǔ)音識(shí)別技術(shù)的發(fā)展與未來(lái)趨勢(shì):深度學(xué)習(xí)、端到端建模與多模態(tài)融合
- 基于深度學(xué)習(xí)的端到端通信系統(tǒng)模型
- 基于深度學(xué)習(xí)方法的端到端的圖像去模糊
- 【云駐共創(chuàng)】華為端到端DevOps概覽
- 語(yǔ)音識(shí)別端到端模型解讀(一)
- 端到端語(yǔ)音識(shí)別的發(fā)展趨勢(shì)
- AI(文生語(yǔ)音)-TTS 技術(shù)線路探索學(xué)習(xí):從拼接式參數(shù)化方法到Tacotron端到端輸出
- 字節(jié)DeerFlow開(kāi)源框架:多智能體深度研究框架,實(shí)現(xiàn)端到端自動(dòng)化研究流程
- CTPN+CRNN 算法端到端實(shí)現(xiàn)文字識(shí)別
- 【論文解讀】LaneNet 基于實(shí)體分割的端到端車道線檢測(cè)