- 深度學(xué)習(xí)的組織和指導(dǎo) 內(nèi)容精選 換一換
-
征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來解釋說明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計算機(jī)視覺、 語音識別 、自然語言處理等其他領(lǐng)域。來自:百科需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:描述神經(jīng)網(wǎng)絡(luò)的定義與發(fā)展;熟悉深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的重要“部件”;熟悉神經(jīng)網(wǎng)絡(luò)的訓(xùn)練與優(yōu)化;描述深度學(xué)習(xí)中常見的問題。 課程大綱 1. 深度學(xué)習(xí)簡介 2. 訓(xùn)練法則來自:百科
- 深度學(xué)習(xí)的組織和指導(dǎo) 相關(guān)內(nèi)容
-
云知識 基于深度學(xué)習(xí)算法的語音識別 基于深度學(xué)習(xí)算法的語音識別 時間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語音數(shù)據(jù)集THCHS30進(jìn)行語音識別的實(shí)戰(zhàn)演練,讓使用者在了解語音識別基本的原理與實(shí)戰(zhàn)的同時,更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來自:百科的深度學(xué)習(xí)。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員了解如下知識: 1、高效的結(jié)構(gòu)設(shè)計。 2、用NAS搜索輕量級網(wǎng)絡(luò)。 3、數(shù)據(jù)高效的模型壓縮。 4、1bit量化。 課程大綱 第1章 能耗高效的深度學(xué)習(xí)的背景 第2章 高效的神經(jīng)元和結(jié)構(gòu)設(shè)計 第3章 基于NAS的輕量級神經(jīng)網(wǎng)絡(luò) 第4章來自:百科
- 深度學(xué)習(xí)的組織和指導(dǎo) 更多內(nèi)容
-
華為云計算 云知識 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時間:2020-12-08 10:34:34 本課程旨基于自動售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺來自:百科
精細(xì)化管控文化。根據(jù) 數(shù)據(jù)治理 領(lǐng)導(dǎo)組的愿景和長期目標(biāo),建立和管理數(shù)據(jù)治理流程、階段目標(biāo)和計劃,設(shè)計和維護(hù)數(shù)據(jù)治理方法、總則、工具和平臺,協(xié)助各數(shù)據(jù)領(lǐng)域工作組實(shí)施數(shù)據(jù)治理工作,對整體數(shù)據(jù)治理工作進(jìn)行度量和匯報,并對跨領(lǐng)域的數(shù)據(jù)治理問題和爭議進(jìn)行解決和決策。 各領(lǐng)域數(shù)據(jù)治理工作組:在各來自:百科
需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類 3. 機(jī)器學(xué)習(xí)的整體流程來自:百科
- nature | 基于深度學(xué)習(xí)方法的虛擬組織染色
- 深度學(xué)習(xí)算法中的自我組織映射網(wǎng)絡(luò)(Self-Organizing Maps)
- kubernetes社區(qū)組織和軟件工程過程學(xué)習(xí)
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.4 優(yōu)化深度學(xué)習(xí)的方法
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.5 深度學(xué)習(xí)展望
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.1.2 傳統(tǒng)機(jī)器學(xué)習(xí)與深度學(xué)習(xí)的對比
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.2.2 基于統(tǒng)計的深度學(xué)習(xí)技術(shù)
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.3 本書涉及的深度學(xué)習(xí)框架
- 深度學(xué)習(xí)的學(xué)習(xí)路線
- 神經(jīng)網(wǎng)絡(luò)和深度學(xué)習(xí)